Temperature signature of high latitude Atlantic boundary currents revealed by marine mammal-borne sensor and Argo data

> Jeremy Grist¹, Simon Josey¹, Lars Boehme², Mike Meredith³, Fraser Davidson⁴, Garry Stenson⁴, Mike Hammill⁴

> > ¹National Oceanography Centre, UK

²Sea Mammal Research Unit, UK

³British Antarctic Survey and Scottish Association of Marine Science, UK ⁴Fisheries and Oceans, Canada.

Funded by a Natural Environment Research Council Small Grant

Outline

- Context
- Data sources
- Methodology
- Comparison with other data sets
- Summary and on-going Work

Improved T/S climatologies required in ocean modelling

- Model runs initiated from basic state.
- Relaxed back to them to avoid excessive drift.
- If the basic state being restored to has a poorly defined current - can promote, rather than restrict drift.

Improved T/S climatologies required in ocean modelling

No. of Months in Year with coverage: EN3 (2004-2008)

- Model runs initiated from basic state.
- Relaxed back to them to avoid excessive drift.
- If the basic state being restored to has a poorly defined current - can promote, rather than restrict drift.

'ATLAS'

'ATLAS' Data Coverage 2004-2008

'ATLAS' Data Coverage 2004-2008

1. Delayed Mode QC Argo is reference data

- 1. Delayed Mode QC Argo is reference data
- 2. Identify seal track overlapping Argo domain

- 1. Delayed Mode QC Argo is reference data
- 2. Identify seal track overlapping Argo domain

 Check for temperature drifts & biases using method of Boehme and Send (2005)

- 1. Delayed Mode QC Argo is reference data
- 2. Identify seal track overlapping Argo domain

3. Check for temperature drifts & biases using method of Boehme and Send (2005)

- 1. Delayed Mode QC Argo is reference data
- 2. Identify seal track overlapping Argo domain

3. Check for temperature drifts & biases using method of Boehme and Send (2005)

4. If RMS difference from ref data < 2x OI error, deployment joins ref data.

'ATLAS' Data Coverage 2004-2008

Frequency of max seal profile depth

96 marine-mammal borne deploymentsMean Max Depth: 197m23% deeper than 300,Mean length of deployment- 142 days

'ATLAS' Data Coverage 2004-2008

Frequency of max seal profile depth

96 marine-mammal borne deploymentsMean Max Depth: 197m23% deeper than 300,Mean length of deployment- 142 days

No. of profiles (thousands)

Objective Interpolation Procedure

- Jan 2004-Dec 2008 monthly gridded temperature estimates and OI error.
- Boehme and Send (DSR II, 2005) OI and correlation scales.
- Monthly fields averaged to produce 2004-2008 mean.
- 1°, 15 levels (0-700m) for comparison with WOA.
- Boehme and Send (2005) OI weights observations according to a) horizontal distance, b) barotropic PV (for topographic steering) and c) time from middle of the month.
- Similarly OI error estimate reflects the degree of separation (in time, distance and PV) of grid point from observations.
- Method allows estimates to be influence by observations beyond spatial bounds of grid cell and temporal bounds of month.

Mean temperature (2004-8): cross-section across 64.5°N

Mean temperature (2004-8): cross-section across 64.5°N

ATLAS more in accord with hydrographic surveys (e.g. Sutherland and Pickart 2008; Cuny et al. 2005)

Temperature (2004-8): cross-section across 64.5^o₅N

Summary

- Data from Argo and Sea-Mammal borne sensors used to develop 1° gridded Temperature data sets for NW Atlantic (ATLAS)
- Complementary spatial domain can help Argo constrain temperature structure of these important regions.
- ATLAS has greater cold temperature signals in shelf areas than WOA and EN3.
- Features consistent with high-resolution ship surveys.
- Future work will use new data to include salinity and seasonal cycle.
- Particularly relevant for ocean modelling as restoring back to a poorly defined boundary current enhances rather than constrains model drift.

Horizontal Dataselection

Based on spatial distance D and fractional distance in planetary vorticity F.

$$D = |\mathbf{a} - \mathbf{b}|$$

$$F = \frac{|PV(\mathbf{a}) - PV(\mathbf{b})|}{\sqrt{PV^2(\mathbf{a}) + PV^2(\mathbf{b})}}$$

 $PV = \frac{f}{H}$

a: float positionb: historical profileposition

(Davis,1998

Boehme et al., 2005)

Objective Interpolation Procedure

- Jan 2004-Dec 2008 Monthly gridded Temperature estimates and OI error.
- Boehme and Send (DSR II, 2005) OI and correlation scales.
- Monthly fields averaged to produce 2004-2008 mean.
- 1°, 15 levels (0-700m) for comparison with WOA.
- Boehme and Send (2005) OI weights observations according to a) horizontal distance, b) barotropic PV (for topographic steering) and c) time from middle of the month.
- Similarly OI error estimate reflects the degree of separation (in time, distance and PV) of grid point from observations.
- Method allows estimates to be influence by observations beyond spatial bounds of grid cell and temporal bounds of month.

Mapping

A set of historical profile is mapped based on:

- the spatial distance D
- the fractional distance in planetary vorticity F
- the temporal distance t

using a two step mapping scheme.

The covariance of the *i* th profile with the float profile becomes:

first stage:
$$Cdg_i(x, y) = exp\left\{-\left[\frac{D_{i0}}{\lambda_l} + \frac{F_{io}}{\Phi_l}\right]\right\},$$
, basin wide mean'
second stage: $Cdg_i(x, y, t) = exp\left\{-\left[\frac{D_{i0}}{\lambda_s} + \frac{F_{io}}{\Phi_s} + \frac{(t_i - t_0)^2}{\tau^2}\right]\right\}.$, residuals'

Short time variability ($\tau \sim \text{week}$) => noise

Objective Interpolation Procedure

Jan 2004-Dec 2008 Monthly gridded Temperature estimates and OI error.

Boehme and Send (DSR II, 2005) OI and correlation scales.

Monthly fields averaged to produce 2004-2008 mean.

1°, 15 levels (0-700m) for comparison with WOA.

Boehme and Send (2005) OI weights observations according to a) horizontal distance, b) barotropic PV (for topographic steering) and c) time from middle of the month.

Similarly OI error estimate reflects the degree of separation (in time, distance and PV) of grid point from observations.

Method allows estimates to be influence by observations beyond spatial bounds of grid cell and temporal bounds of month.

No. of Months in Year with coverage:

