Temperature signature of high latitude Atlantic boundary currents revealed by marine mammal-borne sensor and Argo data

Jeremy Grist1, Simon Josey1, Lars Boehme2, Mike Meredith3, Fraser Davidson4, Garry Stenson4, Mike Hammill4

1National Oceanography Centre, UK
2Sea Mammal Research Unit, UK
3British Antarctic Survey and Scottish Association of Marine Science, UK
4Fisheries and Oceans, Canada.

Funded by a Natural Environment Research Council Small Grant
Outline

• Context
• Data sources
• Methodology
• Comparison with other data sets
• Summary and on-going Work
Improved T/S climatologies required in ocean modelling

- Model runs initiated from basic state.
- Relaxed back to them to avoid excessive drift.
- *If the basic state being restored to has a poorly defined current - can promote, rather than restrict drift.*
Improved T/S climatologies required in ocean modelling

- Model runs initiated from basic state.
- Relaxed back to them to avoid excessive drift.
- *If the basic state being restored to has a poorly defined current - can promote, rather than restrict drift.*
‘ATLAS’
‘ATLAS’
Data Coverage 2004-2008

Argo profiles
Seal profiles
‘ATLAS’
Data Coverage 2004-2008

Seal profiles

Argo profiles
Data Processing Steps

1. Delayed Mode QC Argo is reference data
Data Processing Steps

1. Delayed Mode QC Argo is reference data

2. Identify seal track
 overlapping Argo domain
Data Processing Steps

1. Delayed Mode QC Argo is reference data

2. Identify seal track overlapping Argo domain

Data Processing Steps

1. Delayed Mode QC Argo is reference data

2. Identify seal track overlapping Argo domain

Temperature at deepest point of seal profile

Only within Argo domain
Data Processing Steps

1. Delayed Mode QC Argo is reference data
2. Identify seal track overlapping Argo domain
4. If RMS difference from ref data < 2x OI error, deployment joins ref data.
96 marine-mammal borne deployments
Mean Max Depth: 197m
23% deeper than 300,
Mean length of deployment- 142 days
96 marine-mammal borne deployments
Mean Max Depth: 197m
23% deeper than 300,
Mean length of deployment- 142 days

~13,000 Argo Profiles

~48,000 Marine-mammal Profiles

Hooded Seals
Harp Seals
Grey Seals
Beluga
Objective Interpolation Procedure

- Boehme and Send (DSR II, 2005) OI and correlation scales.
- Monthly fields averaged to produce 2004-2008 mean.
- 1°, 15 levels (0-700m) for comparison with WOA.
- Boehme and Send (2005) OI weights observations according to a) horizontal distance, b) barotropic PV (for topographic steering) and c) time from middle of the month.
- Similarly OI error estimate reflects the degree of separation (in time, distance and PV) of grid point from observations.
- Method allows estimates to be influenced by observations beyond spatial bounds of grid cell and temporal bounds of month.
Upper 500m Temperature (ºC) (2004-2008)
Mean temperature (2004-8): cross-section across 64.5°N

Lab Sea Greenland Irminger Sea
Mean temperature (2004-8): cross-section across 64.5°N

ATLAS more in accord with hydrographic surveys (e.g. Sutherland and Pickart 2008; Cuny et al. 2005)
Temperature (2004-8): cross-section across 64.5°N

- a) SE Greenland
- b) E. Baffin
- c) W. Baffin
- d) SW. Lab Sea
Summary

• Data from Argo and Sea-Mammal borne sensors used to develop 1° gridded Temperature data sets for NW Atlantic (ATLAS)
• Complementary spatial domain can help Argo constrain temperature structure of these important regions.
• ATLAS has greater cold temperature signals in shelf areas than WOA and EN3.
• Features consistent with high-resolution ship surveys.
• Future work will use new data to include salinity and seasonal cycle.
• Particularly relevant for ocean modelling as restoring back to a poorly defined boundary current enhances rather than constrains model drift.
Horizontal Dataselection

Based on spatial distance D and fractional distance in planetary vorticity F.

$$D = |a - b|$$

$$F = \frac{|PV(a) - PV(b)|}{\sqrt{PV^2(a) + PV^2(b)}}$$

$$PV = \frac{f}{H}$$

a: float position

b: historical profile position

(Davis, 1998)

(Boehme et al., 2005)
Objective Interpolation Procedure

- Boehme and Send (DSR II, 2005) OI and correlation scales.
- Monthly fields averaged to produce 2004-2008 mean.
- 1º, 15 levels (0-700m) for comparison with WOA.
- Boehme and Send (2005) OI weights observations according to a) horizontal distance, b) barotropic PV (for topographic steering) and c) time from middle of the month.
- Similarly OI error estimate reflects the degree of separation (in time, distance and PV) of grid point from observations.
- Method allows estimates to be influence by observations beyond spatial bounds of grid cell and temporal bounds of month.
Mapping

A set of historical profile is mapped based on:

- the spatial distance D
- the fractional distance in planetary vorticity F
- the temporal distance t

using a two step mapping scheme.

The covariance of the ith profile with the float profile becomes:

first stage:

$$ C_{dg_i}(x, y) = \exp \left\{ - \left[\frac{D_{i0}}{\lambda_l} + \frac{F_{i0}}{\Phi_l} \right] \right\}, \text{ 'basin wide mean' } $$

second stage:

$$ C_{dg_i}(x, y, t) = \exp \left\{ - \left[\frac{D_{i0}}{\lambda_s} + \frac{F_{i0}}{\Phi_s} + \frac{(t_i - t_0)^2}{\tau^2} \right] \right\}. \text{ 'residuals' } $$

Short time variability ($\tau \sim \text{ week}$) \implies noise
Objective Interpolation Procedure

Boehme and Send (DSR II, 2005) OI and correlation scales.

Monthly fields averaged to produce 2004-2008 mean.

1°, 15 levels (0-700m) for comparison with WOA.

Boehme and Send (2005) OI weights observations according to a) horizontal distance, b) barotropic PV (for topographic steering) and c) time from middle of the month.

Similarly OI error estimate reflects the degree of separation (in time, distance and PV) of grid point from observations.

Method allows estimates to be influence by observations beyond spatial bounds of grid cell and temporal bounds of month.
No. of Months in Year with coverage: