Global assessment of Level 3 SMOS and Aquarius salinity measurements using Argo and an operational ocean model

Contact chris.banks@noc.ac.uk

Aim

 Produce level 3 (gridded) satellite products suitable for scientific exploitation

- Validation against Argo and model output
- Start with monthly...

Measuring SSS from space: basics

- L-band (23 cm), natural emissivity of ocean surface depends on SSS and SST (dielectric properties)
- Brightness temperature at L-band has strongest sensitivity to SSS
- "Protected" radio-frequency (for radio-astronomy)
- Atmosphere is transparent

Measuring SSS from space: challenges

- Requires very large antenna to measure SSS with sufficient spatial resolution and accuracy
- Sensitivity of T_B to SSS is poor even at L-band
- Many factors affect T_B
 - temperature and SALINITY; directional surface roughness; incidence angle, polarisation; foam/whitecapping; other sources of radiation (sun, moon, galactic noise); land and ice

Calibration/validation is tricky because

- Single-pass vs multi-pass:
 - Accuracy of single-pass SSS measurements with SMOS is ~1 psu
 - multi-pass averaging is required
- Sea state effects:
 - Quality of SST and surface roughness info? Which forward model(s)?
- Haline skin effect ?
 - Penetration depth at L-band (35 psu) is ~1 cm
 - in situ measurements of SSS typically at depths of 1-10 m
 - Differences in high precipitation/evaporation areas ?

Argo data

- Coriolis data centre
- Any profile with one valid measurement of salinity at depth <10 m
- Median salinity of each profile
- Median of 1° grid cells by month
- All near real time QC

Why do we need model data?

Shallowest salinity data ~ 5-10 m

 >3000 floats worldwide, vertical profiles of salinity & temperature every 10 days

Number of Argo profiles in November 2011

Model Output – FOAM/NEMO Forecasting Ocean Assimilation Model based on Nucleus for European Modelling of the Ocean

- ¹/₄° resolution daily
- Averaged (mean) to 1° and then monthly
- Assimilates Argo data, as well as satellite SST, SSH and sea ice data

NCOF

The National Centre for Ocean Forecasting

Is FOAM/NEMO suitable for validation?

Bin width is 0.10 March 2012 (N=4909)

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

L3 SSS

Sept 2011 -> Aug 2012 Median SSS in 1°x1° monthly grid separately for asc and descending passes

ESA SMOS L2 v5.50

Only keep SSS where:

- L2 retrieval error < 1
- > 40 km from land
- summary flag for geophysical issues is OK (e.g. glint)
- summary flag for retrieval is OK (e.g. convergence)
- N_{obs}>25
- PLUS weighted mean version using error

Aquarius L2 v1.3

Only keep SSS where:

- 30 < SSS < 40
- -1.9°C < SST < 40°C and
- 0 ms⁻¹ < wind speed < 60 ms⁻¹
- N_{obs}>5
- NO FLAGS

L3 SSS September 2011 Ascending Descending

www.noc.ac.uk

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

L3 SSS September 2011 FOAM/NEMO minus... Ascending Descending

L3 SSS September 2011 Ascending Descending

www.noc.ac.uk

33.6<SSS FOAM<34.2

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

L3 SSS September 2011 Ascending Descending

SOMS

Aquarius

www.noc.ac.uk

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

SSS RMSD (FOAM & satellite)

Conclusions & Future Work

- Issues at high latitudes in Southern Hemisphere wind? ice? galactic noise?
- RFI (radio frequency interference) remains a problem but much improved
- Not comparing like with like (SMOS vs. Aquarius filtering high southern latitudes)
 - Next step regional studies (e.g. SPURS)
- Aquarius and SMOS reprocessed data (plus CATDS SMOS data)
- Assimilation...

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

www.nceo.ac.uk

support to science element

www.smos-sos.org

www.smos-mode.eu

chris.banks@noc.ac.uk

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Ifremer

SMOS+SOS Project

 demonstrate the performance and scientific value of SMOS products through 5 well-defined case studies (CS)

 examine and quantify discrepancies between SMOS and in situ surface salinity data at various depths in different regions characterised by strong precipitation or evaporation regimes

SMOS and in situ salinity: rain and near-surface vertical stratification effects

J. Boutin¹, N. Martin¹, O. Hernandez¹, G. Reverdin¹, F. Gaillard², S. Morrisset¹, N. Reul³

¹ CNRS/LOCEAN Paris, France
² IFREMER/LPO Plouzané, France
³ IFREMER/LOS Toulon, France

+ Coll. With T. Delcroix, C. Maes IRD/LEGOS Toulouse, France

Boutin et al., SMOS-AQUARIUS WS 2013

SMOS S_{1cm} – ARGO S_{~5m} & SSMI Rainfall rate SMOS ascending passes (6am) ITCZ (N. Pacific)

SMOS SSS- ARGO SSS vs. SSMI Rainfall Rate Tropical Pacific 5S-5N (July-Sept 2010)

-nes

