Routine monitoring and research with ARGO in the western Mediterranean Sea:
SOCIB and IMEDEA

3rd Euro-Argo Workshop
June 2010

Emma Heslop
Joaquin Tintoré
Ananda Pascual
Simon Ruiz
Pedro Velez-Belchí
Contents

- Part 1: SOCI B and Argo
  - What is SOCI B?
  - Observing and Forecasting Network
  - Argo and Drifter Facility
  - SOCI B and IMEDEA

- Part 2: Heat Content and ongoing research with Argo
  - Seasonal heat content cycles and surface forcing
  - What next – IMEDEA/NOCS PhD Research Project
What is SOCI B?

SOCIB is the new Coastal Ocean Observing and Forecasting System located in the Balearic Islands.

- A multi-platform distributed and integrated system that will provide streams of oceanographic data and modeling services to support operational oceanography within a European and international framework. A new facility of facilities, open to international access.
- Contributing to the needs of marine and coastal research in the context of global change.
- Joint funded by the Spanish Government (MICINN) and the Balearic Islands Government to 2021, new approach, long term monitoring.
The Balearic Islands - strategic location

SOCIB benefits from the Balearic Islands strategic location:

- Central in western Mediterranean
- Important transition area between Atlantic and Mediterranean waters
- Significant interactions between basin and sub-basin scale circulation, with mesoscale and submesoscale dynamics of particular relevance
- Local dependence on marine activities (maritime traffic, fishing, tourism)
- Marine reserves and other vulnerable marine ecosystems
To develop a coastal ocean observing and forecasting system that will:

- provide free, open, quality controlled and timely streams of data
- support research and technology development on key internationally established topics
- consolidate operational oceanography and associated marine technology development in the Balearic Islands and in Spain
- support the strategic needs of society in the context of global change
SOCIB Structure

Drivers are 3 fold:
- international scientific priorities,
- technology and
- the specific interests of society
Vision: to advance on the understanding of physical and multidisciplinary processes and their nonlinear interactions, to detect and quantify changes, understand the mechanisms and to forecast their evolution, under e.g. IPCC scenarios.

Monitor: nearshore to coastal ocean regional variability, mesoscale, submesoscale, interactions and ecosystem response.

Specifically: addressing the preservation and restoration of the coastal zone and its biodiversity.

finding new approaches and advancing a more science based sustainable management of ocean and coastal areas.
Initial Observing Facilities:
1. R/V (24m Catamaran)
2. Fixed coastal buoys
3. HF radar
4. Gliders
5. Argo floats & surface drifters
6. Beach monitoring system

Additional monitoring and visualisation technologies under development in ETD

Observational datasets are integrated to exploit the synergies between observed data per se and the observed and numerical modelling datasets. To enable real time monitoring of the state of the coastal zone and prediction of its spatial and temporal evolution.
Forming a sustained, spatially distributed, heterogeneous, potentially re-locatable and dynamically adaptive observing network

With data streams from observing network open and free to international access and from 2012 onwards external, peer reviewed, access to the observing network will be enabled

Through monitoring, data integration, technology development and cooperation with research institution partners SOCIB aims to enable 1) advances in key topics of international interest and 2) application and transfer of knowledge to make advances of relevance to society, particularly in the area of ICOM.
SOCIB Argo and Drifter Facility

- Mostly centered in the western Mediterranean, with focus in the Balearic Islands and adjacent sub-basins, Algerian and Alborán
- SOCIB aims to maintain an active fleet of 8 Argo floats and 16 Surface Drifters
- Contributing to the Euro-Argo program (Pedro Vélez-Belchí, IEO, scientific coordinator)

- Complex Mediterranean ocean dynamics mean aim for coverage at resolution $2^\circ \times 2^\circ$
Planned Deployments:

- 2010 - 4 Argo and 8 Drifters - location Balearic and Algerian basin
- 2011 - 4 Argo and 8 Drifters - location Balearic and Algerian basin*
- 2012 - 2 Argo and 4 Drifters - location Balearic and Algerian basin*
- 2013 - 2 Argo and 4 Drifters - location Balearic and Algerian basin*

Data stream assimilation:

- 2011 - Data assimilated into SOCIB web site
- 2012 - Integrated viewing tools available

* to be reviewed each year within Euro-Argo frame and existing float density etc.
SOClB Argo Applications

- Real-time monitoring of broad scale ocean structure (T, S and deep currents), contributing to our understanding of deep and intermediate waters and the role of atmosphere and large scale circulation in Mediterranean

- Data assimilation into HOPS and ROMS to verify 3D current fields

- Integrated with other facility datasets in particular with glider data - blending large scale and mesoscale datasets to develop a new integrated view - available through SOClB portal

- Specific research projects in collaboration with IMEDEA
With funding approved until 2021, SOCIB will undertake responsibility for routine monitoring, assimilation and forecasting in the Balearic Seas area.

The underlying scientific research will be carried out at IMEDEA and other research institution partners.

SOCIB developed from research initiatives in the Balearic Islands and remains closely integrated.
From SOCIB monitoring to Argo research…….
Heat Content Budgets and the Mediterranean Basin

- 2009 MSc Research Project: University of Southampton supervisor Prof. Harry Bryden

- Research question: Heat loss from the Mediterranean basin is measured at -5.2 Wm\(^{-2}\) (Macdonald et al 1994), surface forcing from climatology datasets NCEP/NCAR indicates a gain of +2 Wm\(^{-2}\) (Josey 2003) - this represents an unknown bias that may affect our understanding of surface forcing with reference to issues like DWF

- Hypothesis: Bias in NCEP visible in seasonal cycle heat content

- Two datasets:
  - In situ Argo T/S profiles
  - surface forcing NCEP/NCAR Reanalysis heat fluxes

- Gain insight through comparing:
  - heat content surface ocean (2004 – 2008)
  - anticipated from surface heat fluxes

After Robinson et al (2001)
Method

Calculation:
- Surface forcing: Calculated from NCEP ($Q_{TOT} = Q_S + Q_B + Q_H + Q_E$)
- Heat Content Cycle: calculated from Argo ($HC = \int Cp(z)A dz$)

Comparison:
- NCEP/NCAR grid box areas 2° x 2°
- Multiple floats, multiple years
- ‘Along’ float trajectories
- Remained within box (approx.)
- 3 Areas in eastern Mediterranean
- 2 Areas in western Mediterranean
- Cumulative heat content annual basis

In situ sources of heat:
- Surface forcing
- Horizontal advection
- Vertical mixing
Sample Results - Area B6

- Argo (red) / NCEP (black)
- Least squares regression (blue dash)
- Key indicators amplitude and date maximum

For Area B6 (SE Levantine)
- Consistent summer amplitude
- Argo cycle > NCEP
- Cumulative ± 15 Wm$^{-2}$ NCEP margin not explain
- Residual (Argo-NCEP) - has consistent timing and significantly greater amplitude
- Bias, advection, surface forcing?
For Area B1 (SW Levantine)
- Remarkably similar to NCEP
- Variance and standard deviation confirm

For Area A3 (Mid N Levantine)
- Flatter summer, higher late winter heat content
- Not statistically different to NCEP
Causes?

- Eastern Med - 3 areas have different local seasonal patterns of heat content
- No consistent bias with NCEP, B1 good match, B6 significantly different

Relating to the physical environment
- Surface circulation - AW anti-clockwise basin wide gyre, permanent eddies/meanders
- Meltemi wind - May – Sept

Insight into causes:
- B6 coincident with Meltemi - advection of warm water south
- A3 cool summer, removal surface waters, stronger AW flow in winter

Insight and Conclusions

- Areas 5 have different local seasonal patterns of heat content captured by Argo.
- No consistent pattern of bias between Argo and NCEP indicated.
- NCEP does a reasonable job in some areas, but complex local winds not well enough represented, finding concurs with other research (Ruiz et al 2008 - downscaled flux data).
- Likely that significant differences between Argo and NCEP related to advection.
- Further investigation could correlate timing of advection to other local datasets.

- Currently float coverage not sufficient for a Mediterranean-wide approach, particularly areas stronger currents.
Datasets: Argo, glider, CTD, model

Rational: The climate of the Mediterranean is influenced by complex interactions across different components of the climate system and studies need to span a range of temporal and spatial scales to validate model representation and to analyse and understand the response of the Mediterranean oceanic processes to climatic variability.

Aim: to try and encompass some of this scale by concentrating on a particular aspect in a particular area and assessing seasonal to decadal changes at a variety of scales.

Focus: variability of physical dynamic elements the Balearics Sea region, specifically the position and strength of the Catalan front and the Balearic front and associated currents.

Including: model outputs (Med-MFC and ROMS) and a new multi-glider experiment in the south western Mediterranean Sea to investigate submesoscale dynamics.

Just started!
Any questions or comments most welcome…….
Coastal Ocean Observatories

A New Approach to Marine and Coastal Research

New technologies now allow three-dimensional real time observations, that combined with forecasting numerical models and data assimilation enable

A quantitative jump, in scientific knowledge and technology development

And the development of a new form of Integrated Coastal Zone Management, based on recent scientific and technological achievements

IMOS, NEPTUNE, VENUS, OOI, IOOS
The Mediterranean Sea can be considered as a reduced scale ocean laboratory, where processes are characterized with smaller scales than in other oceanic regions.

- **ENVISAT:**
  - Balearic Sea: T-773.6 missions (every 70 days).
- **JASON-1/2:**
  - Alboran Sea: T-172 (July 2008).
  - Balearic Sea: T-70 (August 2008).
- **JASON-1 (new orbit):**

**11 glider missions** from July 2007 to December 2009 in the WMed along altimeter tracks

5500 full CTD casts + oxygen, chlorophyll, turbidity
Glider missions perpendicular to the main features of the basin

From Bouffard et al. (2010)
Data Sets

**Envisat /Jason**
- Along track SLA (1 Hz / 20 Hz)  
  Horizontal resolution: 7 km / 500 m  
- Corrections: Tides, HR HF barotropic motion (DAC), ...
- Gridded products
- MDT: Mean Dynamic Topography (Rio et al. 2007)
- ADT = SLA + MDT

**Glider**
  Depth averaged GPS currents
- **Vertical extension:** 10-180/600 m
- **Horizontal resolution:** 300 m / 1.1 km
# Observations to Deliverables

<table>
<thead>
<tr>
<th>Observing Systems</th>
<th>Variables</th>
<th>Model Systems</th>
<th>E.g. Products, Services &amp; Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Fixed</strong></td>
<td>U, V (currents, surface and profile)</td>
<td>3D coastal ocean forecasting system (HOPS)</td>
<td>Data Centre access portal</td>
</tr>
<tr>
<td>• HF Radar</td>
<td>T (fixed point, profile, SST)</td>
<td>Operational currents forecasting system (ROMS)</td>
<td>Balearic Sea high resolution ocean currents forecast system</td>
</tr>
<tr>
<td>• Coastal buoys</td>
<td>Hs, Hm, Tp, Dp (Waves)</td>
<td>Coastal ocean wave propagation model (WAVE)</td>
<td>Balearic Sea high resolution wave forecast system</td>
</tr>
<tr>
<td>• Beach Monitoring</td>
<td>S (fixed point, profile)</td>
<td>Coupled (ROMS - atmospheric) high resolution operational forecasting system</td>
<td>Early warning system for surge events</td>
</tr>
<tr>
<td>• Nearshore Cable Station</td>
<td>Beach morphology</td>
<td>Coupled (ROMS - NPZD) physical - biological ecosystem model</td>
<td>Oil spill / jelly fish invasion trajectory estimations</td>
</tr>
<tr>
<td><strong>Mobile</strong></td>
<td>Coastal bathymetry</td>
<td>Coastal ocean wave propagation model (WAVE)</td>
<td>Balearic/Mediterranean beach system response to climate change</td>
</tr>
<tr>
<td>• SOICIB R/V Operations</td>
<td>Sediment samples</td>
<td>Coupled (ROMS - NPZD) physical - biological ecosystem model</td>
<td>Beach erosion and variability monitoring</td>
</tr>
<tr>
<td>• Gliders</td>
<td>Sediment transport (OBS)</td>
<td>Coupled (ROMS - NPZD) physical - biological ecosystem model</td>
<td>Adaptation to EU Framework legislation for the coastal zone</td>
</tr>
<tr>
<td>• AUV’s and ROV’s</td>
<td>Fluorescence (profile)</td>
<td>Coupled (ROMS - NPZD) physical - biological ecosystem model</td>
<td>Beach carrying capacity (physical and social)</td>
</tr>
<tr>
<td>• Argo and Surface Drifters</td>
<td>Oxygen (profile)</td>
<td>Coupled (ROMS - NPZD) physical - biological ecosystem model</td>
<td>Tools for coastal zone decision makers</td>
</tr>
<tr>
<td>• Fishing Fleet Monitors</td>
<td>Biogeochemical indicators</td>
<td>Coupled (ROMS - NPZD) physical - biological ecosystem model</td>
<td>Science based coastal zone policy recommendation</td>
</tr>
<tr>
<td>(N, P, Si, larvae)</td>
<td>(N, P, Si, larvae)</td>
<td>Coupled (ROMS - NPZD) physical - biological ecosystem model</td>
<td>Forecasting of Blue Fin Tuna spawning location and larval survival rates</td>
</tr>
</tbody>
</table>
SOCIB: Science, technology and society

- To deliver, through the integration of observational data streams, modeling and cooperation with research institute partners 1) advances in key topics of international interest and 2) through local application and transfer of knowledge to make these advances of relevance to society, particularly in establishing a more science based sustainable management of the ocean and coastal areas.

- Over the longer term, our vision is to advance on the understanding of physical and multidisciplinary processes and their non linear interactions, to detect and quantify changes in coastal systems, to understand the mechanism that regulate them and to forecast their evolution and/or adaptation under, for example, different IPCC scenarios.

- More specifically, SOCIB will address the preservation and restoration of the coastal zone and its biodiversity, through the analysis of its vulnerability under global change and through considering new approaches, such as connectivity studies and Marine Protected Areas optimal design, to advance and progressively establish a more science based sustainable management of the ocean and coastal areas.
Facilities achieve operational capability over 2011 and 2012
Aim to be operational with 8 facilities in 2013
With new technology under development

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observing Facilities:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Research Vessel</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
<td>C</td>
</tr>
<tr>
<td>Coastal HF Radar</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
<td>C</td>
</tr>
<tr>
<td>Gliders</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
<td>IOC</td>
</tr>
<tr>
<td>Drifters</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>PDP</td>
<td>PDP</td>
</tr>
<tr>
<td>Moorings</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
<td>IOc</td>
</tr>
<tr>
<td>Marine and Terrestrial Beach Monitoring</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
<td>C</td>
</tr>
<tr>
<td>Data Centre Facility</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>IOc</td>
<td>OM</td>
</tr>
<tr>
<td>Modelling and Forecasting Facility</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
<td>C</td>
</tr>
<tr>
<td>Engineering and Technology Development Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Support and Technology Development</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
<td>IOc</td>
</tr>
<tr>
<td>Near Shore Station</td>
<td>CD</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>LP</td>
</tr>
<tr>
<td>Ships of Opportunity/Fishing Fleet Monitoring</td>
<td>CD</td>
<td>CD</td>
<td>LP</td>
<td>PDP</td>
<td>IOc</td>
</tr>
<tr>
<td>Strategic Issues and Application to Society Division</td>
<td>CD</td>
<td>PDP</td>
<td>IOc</td>
<td>IOc</td>
<td>OM</td>
</tr>
<tr>
<td>Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management &amp; Finance</td>
<td>PDP</td>
<td>IOc</td>
<td>OM</td>
<td>OM</td>
<td>FOC</td>
</tr>
<tr>
<td>Computing &amp; IT</td>
<td>CD</td>
<td>C</td>
<td>OM</td>
<td>PDP</td>
<td>LP</td>
</tr>
<tr>
<td>Outreach, Education, Training &amp; Mobility</td>
<td>CD</td>
<td>CD</td>
<td>PDP</td>
<td>PDP</td>
<td>PDP</td>
</tr>
</tbody>
</table>

Note: CD = Complete Deployment, PDP = Partial Deployment, LP = Live Prototype, OM = Operational Mode, FOC = Fully Operational Capability.
• Education, Outreach and Training
• Step improvement in operational oceanography in the Balearic Islands
• Technology development
• Beach safety and RIP currents
SOCl B Mission and Vision

MISSION

▪ The mission of SOCl B is to develop a coastal ocean observing and forecasting system which will provide free, open, quality controlled and timely streams of data to:
  ▪ support research and technology development on key internationally established topics
  ▪ consolidate operational oceanography and associated marine technology development in the Balearic Islands and in Spain
  ▪ support the strategic needs of society in the context of global change

VISION

▪ Over the longer term, our vision is to advance on the understanding of physical and multidisciplinary processes and their non linear interactions, to detect and quantify changes in coastal systems, to understand the mechanism that regulate them and to forecast their evolution and/or adaptation under, for example, different IPCC scenarios.

▪ More specifically, SOCl B will address the preservation and restoration of the coastal zone and its biodiversity, through the analysis of its vulnerability under global change and through considering new approaches, such as connectivity studies and Marine Protected Areas optimal design, to advance and progressively establish a more science based sustainable management of the ocean and coastal areas.