Biogeochemical sensors on profiling floats

Hervé Claustre, Fabrizio D'ortenzio, Antoine Poteau Laboratoire d'Océanographie de Villefranche (LOV) 06230 Villefranche-sur-mer FRANCE

Presentation outline

□ The context and the challenges

 \Box The « bio » variables to be measured.

□ Some examples of ongoing technology

- Bio-optical floats
- Nitrate floats
- The advantage of iridium

□ The link with satellite "ocean color" observation component.

□ The issue of data flow, data management and data policy.

□ Future plans

Meeting & Working Groups

Claustre, H., et al. (2010). "Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies » Community White Paper, in press.

Claustre, H., et al. (2010). "Guidelines towards an integrated ocean observation system for ecosystems and biogeochemical cycles", Plenary Paper in press

The context and the challenges

□ Ocean biology and biogeochemistry under increasing stress.

□ Ocean biology and biogeochemistry heavily depend on physical forcing.

□ Physical forcing and associated "bio" response : a continuum of spatial (sub-meso / meso / basin / global) and temporal (diurnal / seasonal / decadal) scales.

□ The last century : a century of undersampling, especially for "bio": a large part of the variability in oceanic biological processes missed by traditional sampling.

□ Rapid technological advances in ocean observations: physical oceanographers have been the first taking benefit from it (i.e. Argo floats).

□ With a certain time lag, biological and biogeochemical oceanographers are undertaking a similar technological rupture; development of "bio" sensors that fit with the requirement of the new platforms (low consumption, miniaturization, endurance).

□ Biological oceanography is emerging from its data-limited foundations.

□ Based on these new technologies, pilot projects have been launched.

□ If, from these emerging (individual, national) initiatives, we begin to coordinate in terms of networks, arrays, data sharing and management, a revolution can be expected in observation for biological and biogeochemical oceanography.

The context and the challenges

□ Two main expected outcomes from such an *in situ* observation system:

- Scientific outcome are : enhanced exploration, improved understanding of change and variability in ocean biology and biogeochemistry (over a large range of spatial and temporal scales), reduction of uncertainties in biogeochemical fluxes.
- Operational outcome are: ocean biogeochemistry and ecosystem predictability; provide (real time) open data to scientists, users and decision-makers.

□ Both scientific and operational objectives for biology require the "in situ" part to be designed and implemented in tight synergy with two other essential bricks of an ocean observation system:

- Biogeochemical / Ecosystem modeling: from NPZ models to Plankton functional Types (PFT) models.
- Satellite observation of Ocean Colour Radiometry (OCR). Global, synoptical, timeseries.

The core ecosystem and biogeochemical variables: which ones?

"For biogeochemical time-series, the list of potential measurements is nearly endless and justifying inclusion / exclusion is difficult. Decisions as to what to measure, as well as how to measure, are never trivial. <u>The list of "essential" measurements for time-series can grow</u> to the point that sustainability of the entire enterprise is put at risk". from Send CWP

□ Observation valid for any kind of observation platform, including Argo floats.

□ Mandatory : selection (labeling) of <u>core variables</u> of the future system.

- Scientific relevance (also with respect to modelers needs and OCR remote sensing products)
- Routinely and autonomously measurable by a variety of platforms (sensors).
- The quality of data produced autonomously : agreement between established (discrete) protocols

□ At the moment, potential core variables over the <u>vertical dimension</u> are: O_2 , NO_3 , Chla, POC. Their progressive implementation in the integrated system can be envisaged.

Progressive implementation / labeling of additional variables with the maturation of sensor technology.

The core ecosystem and biogeochemical variables: which ones next?

□ Variables of the CO₂ system

pCO₂ sensor

• pH : Ion sensitive-field effect transistor (ISFET) (Martz and Johnson)

□ Mid-trophic Automatic Acoustic Sampler (MAAS)

missing link between plankton and fisheries

Plankton functional types

- imaging systems (Jelly Fish)
- particle counting
- Hyperspectral / multispectral radiometry, spectrofluorometry

Nutrients: MicroSystem Technology

miniaturized ecogenomic sensors

Bowler et al., 2009

A float to investigate biogeochemical / bio-optical properties

PROVBIO : PROVOR + c(660) + $b_b(555)$ + Chla Fluo + CDOM Fluo + Ed(3 λ) + iridium

PROVBIO Float in HOT area: July, 2008 – June, 2010

Developing a PROVOR NO3-Float

PRONUTS:

- LOV, IFREMER Brest, Roscoff Station
- First deployment tests planed for fall
 BOUSSOLE site

PROVOR (PROVBIO software)

Some results of the Apex-NO3

from Johnson, ASLO/AGU 2010

The advantage of iridium

- Cost effective high resolution (m), including for T/S...
- Adaptative sampling
 - \checkmark to fit with event processes
 - \checkmark take benefit of satellite ocean color and of forecasts (e.g. storms, mixed layer)
 - ✓ Diel cycle (and measurement of biological fluxes)

The advantage of iridium: float recovery

□ « end of life command »: the float stays at the surface and send a GPS point every one hour.

Recovery of a PROVBIO float after 2 years and 140 cycles in the North Western Med Sea. Collaboration between spanish and french teams.

Extremely important recovery to analysis sensor status. Some bio-fouling (essentially the bottom window of the transmissiometer)

The key to success : "Bio"-data management #1

- □ Tremendous amounts of "bio" data will be acquired in the near future.
- An integrated observation system will be operationally useful and scientifically relevant if and only if it is supported by an efficient data management system....BUT
- □ The "problem" of biologists with data management
 - we are not used to the management of huge datasets.
 - we are not used to make data publicly available
 - we are not used with real time
- □ A "<u>revolution</u>" is thus required in the way we will apprehend data management
- Very efficient data management (and a good example for the "bio" community) : Ocean Color and Argo
 - Real-time delivery with real-time QC (operational data)
 - Delayed mode QC delivery after data reprocessing (scientific, climatictrend value): real issue of climatologies for biology / biogeochemistry.
 - Generation of derived products

The key to success : "Bio"-data management # 2

□ The management of "bio" data is likely a more complicated task than for physical variables because of the diversity of ways of measuring the variables

- □ For example, [Chla], the "universal" proxy of phytoplankton can be measured:
 - from space:
 - In situ, non intrusively by sensors: (spectro)<u>fluorescence</u>, absorption (676 nm)
 - In situ, from filtered water samples : HPLC, (spectro)fluorometry, spectrophotometry
 - In fine, [Chla] should represent the same "bio" product regardless of the method of acquisition. Consider modelers who visit databases...

□ It is thus mandatory to develop a <u>unified format and language which is essential for</u> <u>streamline and interfacing datasets</u>.

□ Upstream of data management, QC and unified format, it will be essential to

- Establish best-practice manual / practical training / capacity building.
- Establish reference material.
- Support regular international intercomparison exercises.
- Develop internationally agreed calibration centers.

Calibration of numerous optodes for O2-Argo at Bergen

Coriolis data center has begun to implement magnagment of "Bio"-data

Chlorophylle a

<u>Oxygen</u>

□ To produce climate – research valuable data sets, it is critical that:

There is no interruption in the OCR missions

Satellite (OCR) - in situ data integration (synergy) exemple from « simple » Argo float in sub-tropical SPG

Satellite (OCR) - in situ data integration (synergy) exemple from « simple » Argo float in sub-tropical SPG

Claustre et al., 2010, in press

Satellite (OCR) - in situ data integration (synergy)

□ In situ data extend the satellite data into the ocean interior.

□ Satellite data fills the gap of loose spatio-temporal resolution of *in situ* data.

Essential to develop synergetic use of "bio" in situ and OCR satellite data:

- Produce 3D/4D fields of some "bio"-variables for the global ocean: Chla.
- "Initial climatologies" => required for developing delayed-mode QC procedures.
- In situ data for validation of OCR products (e.g. "VAL-floats").

The status of the « bio » Argo network

What are the (known) «Bio-floats » plans at the European scale?

- □ 30-50 bio-optical (some +NO3) floats (LOV Villefranche).
 - A. Körtzinger (IFM Geomar): + O2
 - Floats deployed in North Atlantic
 - (Labrador, Irminger, Island) and sub-tropical gyres
 - Cruises of opportunity welcome...
- □ 7-8 bio-optical payload (+ iridium) for Coriolis floats.
 - LOV will set up calibration facilities of sensors.
 - Open to the French community through the regular calls.

□ Bio-optical CAL / VAL APEXs: Emmanuel BOSS (PI NASA / NOPP) tested in the Ligurian Sea (October). (D. Antoine & H. Claustre co-Pi)

□ Canadian (University of Laval) – French (LOV) collaboration for (~ 30-50) bio-optical floats in the Arctic sub-Arctic (with under-ice capabilities)

□ Other pending proposals

We should collect such information as part of Euro-Argo to begin some coordination for the « bio » activities

Merci de votre attention!

.....and special thanks to Serge Le Reste