Quality control of large Argo datasets

F. Gaillard, E. Autret, V. Thierry
Laboratoire de Physique des Océan
UMR 6523: CNRS-IFREMER-IRD-UBO
Argo: more than 9000 profiles per month

The utopia: develop an automatic tool to remove all bad data and keep all good data !!!

The data center approximation: apply automatic QC to separate the problem in 2 parts

1. Real time assimilation: remove all bad data (ex: ECMWF wind measurements from ships) (QC: 1)
2. Delayed mode use (re-analysis): keep all possibly good data, that will need later processing (QC: 1, 2,3?)

The fact: the real world is not binary and frontiers are difficult to specify in the QC continuum 1-2-3

Major reason to the failure of automatic testing: Qualification of individual profiles does not exploit all available knowledge
Using estimation theory for QC

- Estimation theory permits combination of informations from previous knowledge (climatology and statistics) and the full dataset (neighbors): **Optimal estimation (BLUE)**

- **Underlying assumption:** zero mean and gaussian distribution of variables

- This method, can be used in delayed mode and in real time to allow for early detection of errors.

- To discriminate between the error sources, it is better applied on the basic variables (temperature and salinity on depth levels), work on elaborate variables (isotherms or isopycnals reference, dynamical height) should be introduced at a later stage, as for example
 - Wong Method
 - Comparison with altimetry
Analysis system: Method

Objective analysis
(Optimal Interpolation)

- y_0: data vector (observations)
- x_a: state vector (T or S at grid points)
- P_a: covariance matrix of analyzed field
- R: data error covariance matrix
- C_o and C_{ao}: covariance matrices of obs-obs and analyzed-obs
- X_f: first guess for x at analyzed points
- Y_f: first guess at data point

Equivalent observation/mapping matrix:

\[
H^T = P_f^{-1} C_{ao}
\]
In Situ Analysis System: ISAS-V4

151 std-level: [[0 3] [5:5:100] [110:10:800] [820:20:2000]]
1/2° Mercator limits:
Data validation

- Analysis of residuals:
 - $y_o - y_a = R (C_o + R)^{-1}d$

- Applied to ARGO floats:
Data validation: Profiler 6900272

If trend = ± 1
- Screen the profiler series of average residuals (z > 400m) for confirmation
- see salinity and density anomaly,

Trend detected with reverse arrangement test.
Data validation: salinity drift

- T/S plots reveal the salinity drift
Data validation: PF6900299

No trend detected with reverse arrangement test.
Profiler in a meddy
Data validation

- Pressure sensor problem
Data validation: Pressure problem
Converting this into numbers

- Define thresholds on various measures:
 - 1 line = 1 profiler, 1 column = 1 test
 - Col 1, 2: T-offset, Tdrift
 - Col 3, 4: S Offset, Sdrift
 - Col: 5, 6: Density offset and STD
 - Col 7, 8, 9: Pressure offset, STD and Pout

- Define combined indices:
 - Col 11: Pressure p_b
 - Col 12: opposite T-S drift or offset (expression of T sensor error)
Conclusion

- Obtaining a perfect dataset will need many iterations and requires to alternate simple automatic QC, global statistical coherence tests and single profiler screening.
Heat content anomaly

- Blue: anomaly of ARIVO analysis relative to WOA05
Global ocean variability (2003-2007)
(K. Von Schuckmann)

Seasonal cycle:
- The 12 month harmonic (extracted from the 5 years series) show penetration of the seasonal cycle deeper than 200m.

Intra-saisional to interannual variability:
Zonal mean of the standard deviation show the strong deep variability of the North Atlantic (mid and high latitudes) and of the southern ocean (south of 30S)
Annex
Covariances scales

\[C_\phi = C_\theta(dx, dy, dt) = \sum_i \sigma_i^2 e^{-\left[\frac{dx^2}{2u_x^2} + \frac{dy^2}{2u_y^2} + \frac{dt^2}{2u_t^2} \right]}, \]

i = 1; Lx=Ly=300\,\text{km}; Lt = 21 \,\text{days}

i = 2; Lx=Ly=2*\text{resol}<4*\text{Rossby radius})<300\,\text{km}; Lt = 21 \,\text{days}
A priori variance

- **Var**$_{\text{tot}}$: deduced from 2002-2006 database ($S_{\text{obs}} - S_{\text{clim-month}}$)
- **Var**$_{\text{me}}$: from instrument type
- Ratio **var**$_{\text{ms}}$/**var**$_{\text{ls}}$ and **var**$_{\text{ur}}$/**var**$_{\text{ls}}$ specified

\[\text{Var}_{\text{tot}} = \text{var}_{\text{LS}} + \text{var}_{\text{ms}} + \text{var}_{\text{ur}} + \text{var}_{\text{me}} \]