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INTRODUCTION 

This document is the synthesis of a study to apply Machine Learning to Argo floats temperature and salinity 
Delayed Mode Quality Control (Core-Argo-DMQC). There already exist numerous DMQC tests. Most of the 
times they are specific to a particular type of problem with an Argo profile or an Argo measure. For example, 
there are tests to detect drifts, other tests to detect spikes, others for thermal lags and so on … To get a clean 
database, all the alerts generated by those tests sum up and analysts need to study the corresponding profiles. 
 
The aim of our study is to try to use Machine Learning to detect any kind of problem with Argo profiles and 
reduce the amount of time and work for the analysts. 
 
The model can be upgraded in many ways but it already gets better performances than the existing solution 
we used to benchmark our model.  For the same detection rate of BAD profiles, the model generate about 
25% of alerts less than the benchmark solution. This document reference the process we developed to get 
those results. 
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1 MACHINE LEARNING APPLIED TO DMQC 

1.1 Target of the algorithm 

1.1.1 Definition of the classes 

Our aim when applying machine learning to DMQC is to predict if a profile should be visualized by an analyst 
or not. It seems more appropriate than working at observation-level because : 

- If one observation needs to be visualized, then the analyst will visualize the whole profile. 
- There are more information at the profile level than at the observation level. 

 
A profile should be visualized if there is at least 1 BAD observation in it. 
So the 2 classes to predict with the algorithm are: 

- GOOD profile : No BAD observations 
- BAD profile : At least 1 BAD observation 

1.1.2 PSAL as target 

In order to make a proof of concept, we decided to first search for BAD profiles in PSAL. And more specifically 
when PSAL is considered as BAD because of conductivity sensor or for problem of transmission. It means that 
if PSAL is BAD because of temperature sensor, we don’t focus on it for the moment.  
So when QC TEMP is BAD for an observation and QC PSAL is GOOD, we delete this observation from dataset. 
We make this choice because TEMP QCs needs to be predicted too so it can be considered as 2 different 
studies and it is probably a little ambitious to try to solve them both at once for a first try. 
If this approach is validated, it will be possible to try to apply it to DMQC on TEMP. 

1.2 Benefits of machine learning 

Rather than generate alerts for every kind of problems (drifts, spikes, thermal lags…), here we try to have 
everything done in one place. 
 
So if this approach succeeds, it means: 

- There will be no duplicates in alerts. For example, if a profile has a spike and a drift, there will be 
only one alert. 

- The algorithm can find correlations between some features. 
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2 RELIABLE HISTORY 

We use supervised machine learning algorithms and this kind of algorithms needs a reliable history. Hence, 
we decided to request 2 kind of sources : 

- Profiles visualized by analysts 
- Profiles in ARGO DELAYED mode 

2.1 Profiles visualized by analysts 

The safest way to get reliable profiles is to use profiles visualized by at least one analyst. 
Here we define the different sources of profiles visualized by analysts that compose our dataset. 

2.1.1 ISAS source 

Notebook : build_raw_dataset_isas.ipynb 
ISAS is a solution that raises alerts. It is based on a climatology test. Each time an alert is raised on an 
observation, an analyst visualize the whole profile. 

2.1.1.1 Profiles with TEMP and PSAL ISAS alerts 

ISAS raises alerts for PSAL measures and for TEMP measures. But we assume that when a type of measure 
raises an alert, the analyst check every types of measures. So even if alerts are raised on TEMP, we keep the 
profile when we try to make predictions on PSAL. 

2.1.1.2 Profiles with ISAS QC 6 

ISAS use QC 6 to qualify BAD datas. It is an equivalent of ARGO QC 4 but it permits to identify that the BAD QC 
come from ISAS analysis. 
Sometimes ISAS analysts visualize profiles that didn’t raised alerts. Thanks to QC 6, we know that they checked 
it anyway. So we also use those profiles in the dataset. 

2.1.2 SCOOP source 

SCOOP is a tool that permits to visualize and validate profiles. 
When a profile is visualized, it is tracked in metadatas of the profile. We use profiles with those tracks in the 
dataset. 

2.1.3 Min-Max alerts source 

Min-Max is a method that raises alerts when a measure is out of an interval parametred by a minimum bound 
and maximum bound. Each time an alert is raised the whole profile is visualized. So we use profiles that raised 
a Min-Max alerts in the dataset 

2.2 Profiles in ARGO DELAYED mode 

At first, we used only profiles visualized by analysts because we assumed that analysts were more focused 
when analyzing a profile that raised an alert than when analyzing all the profiles of a station to pass it in 
DELAYED mode. 
But we realized that profiles that raise alerts are either BAD profiles or GOOD profiles that seem BAD. 
Because if a profile raises an alert, it is due to the fact that something doesn’t seem normal in it. And if we 
train only on this kind of profiles, the algorithm doesn’t know how to treat the great majority of profiles which 
are GOOD profiles that don’t seem BAD. That is the reason why we add profiles in ARGO DELAYED mode to 
the dataset. 
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3 PERFORMANCE METRICS 

In order to evaluate the performances of the algorithms, we need to define metrics. 

3.1 Metric 1 : Approximative number of alerts per year given a fixed 

detection rate on BAD profiles 

The aim of the algorithm is to reduce the workload of analysts that treat alerts and get the best quality of 
dataset anyway. So we fix a detection rate of detection of BAD profiles and we determine the number of 
alerts it would generate yearly. The objective is to reduce this number of alerts. 
We start by trying to detect 70% of the BAD profiles. This detection rate can be changed but we need to 
consider that the definition of a BAD profiles can be a bit vague. Indeed, we lead a study (notebook : 
study_class_of_duplicates.ipynb) on profiles seen by different analysts and 15% of the 1099 profiles were of 
different classes. 

3.2 Metric 2 : Comparison with ISAS15 alerts only on GOOD profiles of the 

snapshot 

The aim of this metric is to be able to compare our results to an existing solution. We choose to compare to 
the solution ISAS15.  
ISAS15 raises alerts from a climatology test.  

3.2.1 Conversion of ISAS15 alerts at profile level 

ISAS15 is trying to detect BAD observations when we are trying to detect BAD profiles. So the first step is to 
convert ISAS alerts from observations to profiles (X alerts for X observations of a same profile is considered as 
one single alert). 

3.2.2 Only the GOOD profiles of the SNAPSHOT 

ISAS15 is applied on a snapshot of ARGO database and try to detect BAD observations that are not already 
flagged as BAD in the snapshot. It means that if a profile has 11 BAD observations and 10 are already flagged 
as BAD, then ISAS15 has to find the single last one. We can not compare our results with ISAS15 results on this 
kind of profiles because our algorithm will use all the observations of the profile to say if it is BAD one or not. 
The task is much harder for ISAS15 which can’t use the 10 observations that are already flagged BAD. (We can 
presume that this 10 observations are easier to detect if already flagged). 
Hence, we decide to base this metric only on profiles that are full of GOOD measures in the snapshot. It 
means that we try to detect new BAD profiles. 

3.2.3 Detection rate fixed to get corresponding number of alerts 

In the notebook ‘get_conf_mat_of_ISAS_on_good_ARGO_prf.ipynb’, we identify the ISAS alerts on PSAL that 
corresponds to some requirements: 

- The profile is full of GOOD QCs in the snapshot 
- The profile date is in or after 2014. We will see in the section on validation strategy that we train 

before 2014 and validate since 2014. 
- There are BAD QCs in the first 120 observations. (Here we talk of QCs after ISAS analysis and not in 

the initial snapshot). We will see in the section on preprocessing that for the moment our algorithm 
is applied only on the 120 first observations of each profile. So if the BAD QCs of a BAD profile are 
after the 120th observations, we can not detect it. 

 
Thus, we can see that : 

- Out of 15691 alerts, 5114 corresponds to our requirements.  
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- Among those 5114 alerts, 755 are alerts on BAD profiles. The others can be considered as false 
alerts. 

- The number of profiles in the snapshot corresponding to the first 2 requirements (‘full of GOOD QCs 
in the snapshot’ and ‘since 2014’) is 294 012. 

- 1600 of those 294 012 profiles are BAD profiles. 
 

We can deduce the detection rate on BAD profiles of the 5114 ISAS alerts which is 47% (755/1600). 
The metric we use to compare the results of our algorithm to ISAS15 is the number of alerts we generate to 
get this same detection rate divided by the number of ISAS alerts. So we get a pourcentage of the number of 
alerts generated to detect as much BAD profiles. This way we can know if we reduce or grow the workload of 
analysts. 
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4 VALIDATION STRATEGY 

One of the most important step in machine learning process is the definition of the validation strategy. It 
means the definition of the datasets used to train the model and the datasets used to validate the model. If it 
is not well defined performances can’t be reliable. 

4.1 Split on dates 

We can split the datasets of the validation strategy in multiple ways. It can be random or fit certain conditions. 
In our case, we split the datasets on dates because it permits to avoid overfiting. If it is not splitted on dates, 
it would mean that we can only predict the class of a profile if we know the situation around this profile at the 
same time. And we could wonder what would happen when there are no profiles corresponding to this 
criteria ? 
Futhermore, if the split is done on dates, the model can also be applied in Real-Time mode. Indeed, the model 
is validated on datas it never saw before so we can assume that it generalizes well in the future too. It is the 
split that get us the closest to a deployment in production.  

4.2 Training, validation and test sets 

When there are enough datas, it is pretty common in machine learning to split the datas in three datasets: 
the training set, the validation set and the test set.  
First, the model is trained on the training set and use to make prediction on the validation set. All the work of 
optimization is done this way and never looking at performances on the test set. 
Then when optimization is finished, we can use the test set to verify that the performances are the same that 
on the validation set. It can be done with 2 different ways : 

- Keep the same model and predict on test set. 
- Re-train the model on training set concatenated with validation set and predict with this new 

model on test set. In our case, we prefer this approach because the split is done on time. If we keep 
the same model and it is less performant on the test set than validation set, it can be due to the fact 
that it was trained on datas until a certain date and the validation set corresponds to (this date + 1 
year) while the test set corresponds to (this date + 2 years). This would implies that knowledge 
about recent datas is valuable to the model and we presume that it is true in our case. (It would be 
interesting to verify this hypothesis.) 

 
It is important to note that the performance on validation and test sets must be similar. If it is best by far on 
the test set, it is not necessaraly a good news. We can conclude from this that the model is unstable. 

4.3 Custom split on validation and test sets 

Earlier in the section 3.1 (Metric 1), we exposed that when 2 analysts visualize the same profile, the class of the 
profile is sometimes GOOD for an analyst and BAD for the other. So we know that we can not be 100% sure of 
the definition of a BAD profiles.  
And we presume that if no analyst saw a profile, the incertainty in the quality of the QCs is greater. 
That is the reason why we use a split which can be a bit strange at first sight but it is the solution that seems 
the more reliable to our point of view. This solution consist of using 2 datasets for validation set and 2 datasets 
for test set : 

- First dataset : A dataset composed of the most reliable datas in our possession : only profiles 
visualized by analysts (see Section 2.1 : Profiles visualized by analysts). We make the predictions on this 
dataset and find the threshold of prediction corresponding to the desired detection on BAD 
profiles (see section 3.1 (Metric 1)). Because this dataset is composed of reliable datas, we assume 
that if the algorithm can have a certain detection rate on this dataset, it is the detection rate of 
the algorithm. 
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- Second dataset : A full year of profiles. Here we are not concerned about the quality of the profiles. 
This dataset is here to estimate the number of alerts the algorithm generates yearly for the desired 
detection rate. So we take the threshold of prediction determined on the first dataset and we apply 
it to the second one to get this number. The profiles with a prediction larger than the threshold are 
considered as alerts. 

 
The first and the second dataset are both representing the same year. For validation set, there are only 
profiles of 2014 and for test set, only profiles of 2015. 
The 2 datasets overlap because the first dataset is included in the second one but much more smaller : for 
example on year 2014, there are about 4000 profiles in the first dataset and 150 000 in the second one. We 
don’t see it as a problem because they have 2 different purposes and we replicate exactly the same strategy 
on validation set and test set. 
 

 
Figure 1 : Validation of the model 

 
Figure 2 : Test of the model 
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5 PREPROCESSING 

Notebook : preprocessing.ipynb 
Here we preprocess the datas in order to give it the right shape and right format to be compatible with ML 
algorithms. 
The notebook can generate datasets to make classification of GOOD and BAD profiles and regression on the 
number of BAD observations per profiles for both targets: ‘PSAL’ and ‘TEMP’. 

5.1 Preprocessing in one place 

We explain in section 2 (Reliable history) that multiple sources compose the dataset used in this study. There is 
a different notebook to request the profiles of each source. 
Before creating the notebook ‘preprocessing.ipynb’, the preprocessing was executed in the notebooks specific 
to each sources. But then we realized, it is better to request raw features (measures, QCs, metadatas) of every 
profiles in those different notebooks and get all the preprocessing executed in only one notebook 
(preprocessing.ipynb). Here are the reasons that lead to this choice : 

- The code is easiest to maintain because the preprocessing is only executed in one place. 
- No need to regenerate all datasets when the preprocessing changes. For example, if we want a 

maximum length of profiles of 150 observations instead of 120, we don't need to regenerate each 
dataset but just execute the preprocessing once. 

- If datasets are not generated at the same time, we are sure the preprocessing is the same. 
- While studying predictions, if we want to see what was the profile before preprocessing (for 

example, is the BAD QC a 3 or a 4 ?), we don't need to find the sources and do a request. And 
furthermore sometimes the raw profile can change. For example, profiles that come from GDAC 
can evolve. 

- If we want to have statistics on numbers of observations deleted by preprocessing we can. Before it 
was complicated because we had to do a sum of all observations along all datasets. Furthermore it 
was not precise because some profiles are duplicated in multiple datasets. 

5.2 Adapted QCs labels 

There are a lot of different QC values but our goal is to determine if a profile should be vizualized by an analyst 
or not. And a profile has to be visualized by an analyst only if there is at least one measure that deserve a BAD 
QC in it. So we decide to gather the different values of QCs in only three values : 

• LABEL_GOOD (0) corresponds to QCs 1 and 2. 
• LABEL_BAD (1) corresponds to QCs 3,4 and 6. 
• LABEL_MISSING (2) corresponds to NaNs,7 and QC 9. 

5.3 Missing measures. 

Replace NaNs by a default value (MISSING_VAL = -999) because most ML algorithm can’t take NaNs. Put the 
corresponding QCs to LABEL_MISSING. This way, we can’t have a GOOD or BAD QC corresponding to a missing 
measure. 

5.4 Missing QCs 

We can’t have a missing QC when there is a measure. So when this happens, we have 2 choices : delete 
measures when the QC is missing or give them bad QCs. 
We differenciate 2 cases : 

- If a profile contains measures and all QCs are MISSING, it is probably a sensor with a consequent 
drift so ISAS operators stop watching the measures because they already know it is all bad data. In 
this case, we decide to fill with bad QCs because the sensor records wrong datas. 
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- The other possible case is a profile with some filled QCs and some missing QCs. In this case, we can 
think that a missing QC means BAD but it can also means that they estimated they couldn't judge. So 
we decide that it is safer to delete those measures from dataset. 

5.5 Unique profile sizes 

Most machine learning algorithms require inputs of unique sizes. In order to satisfy this condition, we decide 
to create profiles of unique length. 
If a profile is longer than the fixed length then it is truncated. 
If a profile is smaller than the fixed length then we fill it with VALUE_MISSING (-999) for measures and with 
LABEL_MISSING (2) for QCs. 
The actual version of the dataset is composed of the 120 first observations of each profile.  
Note : We made this choice because we started by training the first algorithms with raw measures. But after 
multiple tests explained later in this documentation, we realized that raw measures are useless when we build 
specific features. So the future releases of our project won’t carry this limitation anymore. 

5.6 Treat dependecies between types of measures 

- If pressure is BAD or MISSING, QC of temperature and salinity can’t be determined because we 
don’t know where the measure is taken in the water column. 

- If temperature is BAD or MISSING, QC of salinity can not be determined because temperature is 
used in calculation of salinity. 

 
Those rules are not always respected in available datas so we need to adapt them. 
If for a same observation, the QC of a type of measure is BAD and the QC of another, which depends on the 
first one, is GOOD (for example QC PRES BAD and QC TEMP GOOD), there are multiple solutions: 

- Delete the concerned profile. 
- Give a MISSING QC to the dependant measure. In this case we need to delete the measure too.  
- Give a BAD QC to the dependant measure. If we apply this solution to our case (determine the quality of 

salinity measure), the algortihm is not trying to only learn the quality of conductivity sensor’s measures when 
sensors for other types of measures (TEMP and PRES) are alright but to understand when whatever sensor is 
OK or not. This seems to us too ambitious for a first try. 

In order to choose if we delete only observations concerned or whole profiles when at least one observation 
has to be deleted in a profile we counted number of observations and profiles concerned. On the dataset of 
the most reliable profiles (visualized by analysts) at the date of 20191023, there are 24955 profiles containing 
BAD QCs on TEMP. It correspond to 667994 BAD TEMP QCs. And there are 6489 profiles full of BAD TEMP QCs. 
So it seems that keeping the profiles and delete only the observations with a BAD QC can be a solution to 
keep more datas in the dataset.  

We choose to apply the following rules : 

• If an observation has PRES MISSING then we delete this observation. TEMP and PSAL can not be 
reliable if we don't know the pressure. 

• If an observation has TEMP MISSING, we delete this observation. We can not judge TEMP neither 
PSAL if TEMP is missing because PSAL depends on TEMP measures. 

• If an observation has PRES BAD, TEMP GOOD and target is TEMP then we delete this observation. 
We can not assign a TEMP GOOD when there is a BAD PRES. 

• If an observation has PRES BAD, PSAL GOOD and target is PSAL then we delete this observation. 
We can not assign a PSAL GOOD when there is a BAD PRES. 

• If an observation has TEMP BAD, PSAL GOOD and target is PSAL, we delete this observation. We 
can not assign a PSAL GOOD when there is a TEMP BAD because TEMP is included in the calculation 
of PSAL. 
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5.7 Drop duplicated cycles 

We explained in section 2 (Reliable history) that we request multiple sources in order to build our dataset. A 
profile can be represented in more than one of this sources. 

If a profile is duplicated over multiple sources the information can be different between the 2 sources 
because some sources take profile in the snapshot of 2016 of ARGO database and other sources take profiles 
from the GDAC (actual state of the ARGO database).  And sometimes adjustements are applied to the 
measures after the snapshot. So adjustements that were not applied in the snapshot of 2016 can exist and 
change measures in the GDAC. 

It can be interesting if we have a duplicate with different measures in the 2 occurrences of the profile. For 
example, if the second occurence has a new adjustment which change the class of the QC from BAD to 
GOOD. But it is a problem if they are similar or kind of similar because if a model is able to detect one of the 
occurence it will easily detect the second occurence and the detection of one profile will count for two in 
performance metrics (because it is twice the same one). Futhermore if the split between train and validation 
is random then it can overfit because similar or identical profiles can be in train and validation sets. 

In order to solve this problem, we decide to take only the profile present in the Snapshot 2016 when the 
profiles is in a source coming from the snapshot and a source coming from GDAC. We made this choice 
because the only case when it could happen is when a profile is in an ISAS source (isas_qc6, isas_temp or isas 
psal) and in a source from GDAC. And the confidence in ISAS results is pretty high.  

So to synthetise : 

• When there are duplicates in lines that contains only profiles from snapshot, we take the first 
occurence of each unique cycle number. ('001_A,'001_A','001_B' become '001_A','001_B'). There 
can be letters (‘_A’, ‘_B’, …) after the cycle number because a same cycle number can have different 
directions (ascendant and descendant measures) and it can have also different schemes (measures 
taken every X steps, every Y steps …). 

• When there are duplicates in lines that contains only profiles from GDAC, we take the first 
occurence of each unique cycle number. 

• When there are duplicates in lines that contains profiles from both sources then we take the first 
occurence of each unique cycle number only for the profiles that come from snapshot.  

5.8 Delete empty profiles 

Profiles with no observations are useless in the dataset so we delete them. 

5.9 Get labels for regression and classification 

Here, we define the target of machine learning algorithm (the result it tries to predict). For the moment, we 
only do classification but the notebook permits to generate regression labels too.  
Label for classification : class of the profile.  

- The profile is GOOD if there are no BAD observations in it. 
- The profile is BAD if there is at least one BAD observation in it. 

 
Label for regression : number of BAD observations in the profile. The aim of the regression is to predict this 
number. 
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5.10 Drop profiles with BAD QCs for date or position 

If the date or the position is not reliable, we can't exploit the profile so every profile with a bad QC on date 
and/or position is deleted. 

5.11 Replace NaNs by medians of the training set 

We explained that if some measures were missing, they were replaced by a default value (MISSING_VAL = -
999) but for features that are not measures there is still the possibility to get NaNs. Thus, for features that are 
not measures, we replace every NaN by the value of the median of the corresponding column in training 
set. 
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6 FEATURES 

In this section, we reference all the features available in the dataset. They aren’t all necesseraly used in every 
model because sometimes they can be useless or sometimes we wonder if they can lead to overfiting. 

6.1 Metadatas 

The dataset contains metadatas : 
- wmo 
- cycle 
- lat 
- lon 
- direction 
- month 
- year : With random forest and a validation strategy based on a time split it is not optimised because 

the validation set contains only values the algorithm has never seen but it has proven to be helpful 
anyway. It must absolutely be considered as a continuous variable and not a categorical variable to 
permit to the algorithm know that 2013 is superior to 2014. 

6.2 Lenghts of profiles 

Some features use mean and standard deviation of information relatives to each observation. It can be useful 
to the algorithm to know how many observation constitute those means and standard deviations. 
And perhaps some sensors are better when they make a lot of measures or really few measures ? This feature 
can encode this kind of information. 

6.3 Negative pressures 

Usually there are automatic tests that flag negative pressures but it seems that sometimes it is not the case. 
So we add features to qualify negative pressures :  

• Number of observations with negative pressures in profile 
• Minimum of the negative pressures 

6.4 Climatology features 

For each observation of the profiles, we get the mean of measures, the standard deviation of measures and 
the number of measures in the corresponding grid square of the desired climatology. 

6.4.1 Features on the difference between measures and climatology means 

For each observation, we calculate the difference between the measure of the observation and the 
climatology mean. And from there, we generate the following features for each profile: 

- Mean of the differences 
- Standard deviation of the differences 
- Min of the differences and the corresponding PRES, TEMP and PSAL in order to get more info about 

the context of this minimum 
- Max of the differences and the corresponding PRES, TEMP and PSAL in order to get more info about 

the context of this maximum 
 
Thanks to this features, the algorithm can know if the majority of the profiles is far from the climatology or 
not. Or for example understand that the majority of the profile sticks to the climatology but at least one 
value gets really far from it (thanks to features on the maximum of the values). 
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6.4.2 Features on number of climatology standard deviations between measures and 

climatology means 

For each observation, we calculate the number of climatology standard deviations between measures and 
climatology means. And from there, we generate the following features for each profile : 

- Mean of the values 
- Standard deviation of the values 
- Min of the values and the corresponding PRES, TEMP and PSAL in order to get more info about the 

context of this minimum 
- Max of the values and the corresponding PRES, TEMP and PSAL in order to get more info about the 

context of this maximum 

6.4.3 Features on number of observations in climatology grid squares 

For each observation, we have the number of observations in the corresponding grid square of the 
climatology. From there, we create the following features : 

- Mean of the values 
- Standard deviation of the values 
- Min of the values  
- Max of the values 

Thanks to this feature, the algorithm can know if it can have confidence in the features based on the 
climatology. Indeed if the mean of those values i slow then it means that information are less reliable. 

6.4.4 Features on the deepest observation of the profile 

In general, the deepest we go in the sea and the more stable are measures over time at a specific location. 
That is the reason why we decided to dedicate some features to the deepest observation of each profile : 

- PRES, TEMP and PSAL 
- Difference between the measure of the observation and the climatology mean 
- Number of climatology standard deviations between measures and climatology means 

6.4.5 Multiple climatologies 

Climatologies can be built using different ways. For the moment, we worked only with climatology of WOA18 
(World Ocean Atlas by NOAA). And climatology of WOA18 are built among three main criterias : 

- Size of the grid squares : 5°, 1°, ¼° 
- Period of times : all available measures or a specific decadal 
- Type of measures : TEMP or PSAL 

We decide to use multiple climatologies to build multiple times all the features explained above because 
we think they can be complementary.  
It seemed that size of grid squares can be an important factor. Indeed, bigger grid squares gives a global 
information about the surrounding of the observation and are built with a lot of observations. And smaller 
grid squares can give precise information on the surrounding of the observation but can perhaps show lack of 
observations. 
Furthermore, even if our target is PSAL, we wanted to also create features around TEMP because sometimes 
it happens that TEMP and PSAL doesn’t have the same behaviour in the water column and it can relate to a 
spike on one of the sensor. 
Finally, we included a time factor too in the choice of climatologies because WOA18 propose only climatologies 
with all available measures for the size of grid squares of 5°. And all other climatologies we chosed are based 
on the last decadal available. 
So the combinations of criterias for the climatologies we used are : 

- PSAL; 1/4° ; 2005/2017 
- PSAL; 1° ; 2005/2017 
- PSAL; 5° ; Averaged decades from1955 to 2017 
- TEMP; 1° ; 2005/2017 



 
 

- 18/25 - 
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7 TOOLS TO ANALYZE MODELS RESUTS 

In this section, we define different tools that permit to get model performances and get some statistics and 
visualization of the results to understand them better. 

7.1 Number of BAD profiles according to a parametred number of alerts 

We defined a function that take in input an array of as many number of alerts as we desired. The function 
returns the numbers of BAD profiles detected for each number of alerts and the corresponding thresholds of 
prediction. 
It is usefull to easily see how the performance evolves with number of alerts and fix this number if a model 
has to go in production. Because in production, analysts can treat only a certain number of alerts in a certain 
time. 

7.2 Number of alerts to detect according to detection rates on BAD profiles 

We defined a function that take in input an array of as many detection rate on BAD profiles as we desired. The 
function returns the numbers of alerts generated for each detection rate and the corresponding thresholds of 
prediction. 
It is the same principal as the function above but having this 2 tools permit to fix objectives as we want: do 
we want to reduce number of alerts generated or do we want to get a better detection rate ? 

7.3 Number of alerts raised for the same detection rate as ISAS15 alerts 

This corresponds to the performance metrics 2 (see section 3.2 : Metric 2). 

7.4 Confusion matrix with threshold 

Get confusion matrix according to a desired prediction threshold. 
We can get them in pourcentage and real number of profiles. 

 BAD Profiles GOOD Profiles 

Not alerts A B 

Alerts C D 

 

7.5 Confusion matrix on different sources 

Get confusion matrix on every sources. It permits to see if the performances are the same on every sources.If 
they are different, we can try to understand why. 

 
Figure 3 : Confusion matrix by sources (in pourcentage) 
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7.6 Feature importances 

Get the importance of each feature and visualize the evolution of feature importances. This tools is 
implemented in scikit_learn and permits to understand which features the model use the most to predict 
classes. 

 
Figure 4: Feature importances 

 
Figure 5: Evolution of feature importances 

7.7 Visualize predicted profiles 

We defined 4 functions : 
- See best GOOD predictions (profiles with highest predictions on class GOOD) 
- See worst GOOD predictions 
- See best BAD predictions 
- See worst BAD predictions 

 

 
Figure 6 : Best BAD predictions 

  
- GOOD observations are colored in green. 
- BAD observations are colored in yellow. 
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This tool is useful to understand what kind of profiles the model is good at detected or not. From those 
observations, we can decide which features to create to enhance the model. 
For example, by visualizing worst BAD predictions, we identified on a model that all the profiles that the 
algorithm couldn’t detect were profiles full of BAD QCs. It gave us the idea that perhaps the model needed 
features to qualify drifts because when a whole profile is wrong it can be due to the fact that the sensor is 
drifting. 
Note : In the future, we’ll try to add also the predictions were the model is the less sure of the class of the 
profile. 50% GOOD /50% BAD. 

7.8 Plots on BAD observations in profiles 

We can plot an histogram of the percentage of BAD observations in PREDICTED class BAD and PREDICTED 
class GOOD. It is done only for BAD profiles because there are not BAD observations in GOOD profiles. 
It permits to see if the algorithm is good at predicting profiles full of BAD observations or if it can be good at 
predicted profiles with few BAD observations too. 

 
We did the same thing with number of BAD observations (rather than pourcentages). 
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7.9 Plots on profiles sizes 

 

7.10 Maps of predictions 

We defined 2 functions : 
- Plot GOOD and BAD predictions of GOOD profiles 
- Plot GOOD and BAD predictions of BAD profiles 

 

 
Figure 7: Plot of GOOD and BAD predictions for BAD profiles 
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8 OPTIMIZE MODELS 

In this section, we expose the different ways we implemented to enhance the performances of a model. It 
means that datasets and features are set and from there we try to get the best performances out of it. The 
models trained for the moment are essentially random forests. 

8.1 Add delayed profiles to dataset 

We exposed in section 2.2 (Profiles in ARGO DELAYED mode) that we think adding profiles in ARGO DELAYED 
mode can help the model learn what is the definition of a GOOD profiles. 
So we tried to add some profiles in ARGO DELAYED mode and here are the corresponding results. 

Number of delayed profiles Number of alerts for 70% detection rate 

0  

10000  

20000  

30000  

40000  

50000  

100000  

 
Note: The random seed is fixed but try to play with this parameter is surely something to test in the future to 
boost performances by selecting the right set of profiles. 

8.2 Recurrent Features Elimination 

The features presented in section 6 (Features) represent almost 500 features. We assumed we could get better 
performance with less features so we implemented a RFE (Recurrent Feature Elimination). 
The principle of a Recurrent Feature Elimination is based on iteration and at each iteration, the following steps 
happen: 

- Calculate the importance of each remaining feature. It is done by using an implemented function in 
the library scikit-learn 

- Order features by feature importances 
- Delete a certain number of the features with the lowest feature importances. This number is set as a 

parameter. 
- Calculate the performance of the model 

 
This way, we keep the set of features with the best performance of the model. 
We went from 488 features to 42 features and the perfomances went from X to X. 
It permits to get better performances but it permits to get models more stable too. If the model relies on less 
features it can be less complex. 

8.3 Grid search 

Machine learning algorithm have hyper-parameters. They are a lot of them. They can do many things like 
parametrize the architecture of the model or define ways to train the model. 
For example, we can set the maximum depth of trees in random forest or the number of trees in the model. 
The choice of hyper-parameter can have a considerable influence on the performance of models and the 
combination of their values is almost infinite. 
We need a way to find performant combinations effectively. In order to this we used grid search. 
Grid search is implemented in the library scikit-learn but we decided to implement our own version because 
it allows more flexibility. For example, we can implement the custom metrics we defined in section 3 

(Perfomance metrics). 
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8.4 Hyper-parameter after hyper-parameter 

Our approach is to test hyper-paremeter one by one. For each hyper-paremeter, we try different values. We 
keep the best value of the tested hyper-parameter and we go to the next one. 

  

nb_estimators  

criterion  

max_depth  

max_features  

min_samples_leaf  

max_leaf_nodes  

class_weight  

 

8.5 Random search 

We also implemented random search. It permits to set values for different hyper-paremeters, generate all the 
possible combinations of those values and select a random sample of the available combinations. 
This way we can explore combinations around our best combinations using the “hyper-paremeter after hyper-
parameter” approach.  
It permits to explore completely random combinations too. Sometimes we can have good surprise. 
Note: Instead of using completely random search, it is possible to use not totally random method like Bayesian 
Optimization. We consider using this kind of methods in the future. 

8.6 Reduce number of trees  

It is a good practice to do the grid search with less trees and add trees when the best combinations of hyper-
paremeters is set. It permits to gain a lot of time in training. We first learn to build performant trees and then 
use a lot of them. 
To fix the number of trees, we train the first models with different numbers of trees. Then we choose a number 
of trees where the performance starts to be asymptotic. For example, we can get 95% of the best performance 
by using 50 trees and to get about 100% of the best performance it requires 300 trees so we can go 6 times 
faster using this method.  
Note: Same thing could be done with the number of observations in dataset. 
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CONCLUSION 

So the actual model already fulfill our goal which was to reduce the amount of work for analysis with actual 
methods. 
 
We now have the architecture of a complete machine learning workflow. It goes from the constitution of a 
dataset to the analysis of the performance of a model. We have trust in the validation strategy so the 
performance are reliable. 
 
All along this process, there are possibilities to enhance the performances of the model. We already developed 
some of them but we left some others not fully optimized because our first aim was to get this complete 
workflow. Now we can focus on different sections of the process.  
 
The first task will probably be to treat whole profiles and not the 120 first observations because the RFE proved 
that raw measures are almost useless features. Thus, we can build the other features with whole profiles and 
delete the raw measures before training. 
 
Then we can create new features to address every kind of problem with the measures because for the moment 
the model can’t understand every one of them. We can also test other machine learning algorithms like 
XGBoost or Neural Networks. Then the prediction power of multiple models can be combined to get better 
performances by stacking them. It is a good track to explore because different type of models find different 
type of correlations between features so it can be complementary. To conclude, there are many possibilities 
to enhance performances of our model in the future…  


