

# **DEEP FLOAT EXPERIMENT DESIGN**

Ref.: D3.1\_V1.0 Date: 25/05/2020

Euro-Argo Research Infrastructure Sustainability and Enhancement Project (EA RISE Project) - 824131



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 824131. Call INFRADEV-03-2018-2019: Individual support to ESFRI and other world-class research infrastructures





RESEARCH INFRASTRUCTURE SUSTAINABILITY AND ENHANCEMENT

Disclaimer:

This Deliverable reflects only the author's views and the European Commission is not responsible for any use that may be made of the information contained therein.



# **Document Reference**

| Project             | Euro-Argo RISE - 824131                                                                                                                                                                                                                                                                                                                                  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Deliverable number  | 3.1                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Deliverable title   | Deep float experiment design                                                                                                                                                                                                                                                                                                                             |  |  |
| Description         | Design of deployment plan, configuration of the technical parameters of the floats, and complementary observations                                                                                                                                                                                                                                       |  |  |
| Work Package number | 3                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Work Package title  | Extension to deep ocean                                                                                                                                                                                                                                                                                                                                  |  |  |
| Lead Institute      | IFREMER                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Lead authors        | Damien Desbruyères, Martin Amice, Virginie Thierry, Xavier<br>André, Pedro Vélez                                                                                                                                                                                                                                                                         |  |  |
| Contributors        |                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Submission date     | 25 May 2020                                                                                                                                                                                                                                                                                                                                              |  |  |
| Due date            | [M16] - 30 April 2020                                                                                                                                                                                                                                                                                                                                    |  |  |
| Comments            | Due to COVID-19, many people have been teleworking since<br>mid-March 2020. This unprecedented situation led to longer<br>lead times for interactions between partners and<br>manufacturers as well as more uncertainties for deployment<br>cruises and sensor delivery. As a consequence, this deliverable<br>has been released with a one-month delay. |  |  |
| Accepted by         | Pedro Vélez                                                                                                                                                                                                                                                                                                                                              |  |  |

# **Document History**

| Version | Issue Date                | Author           | Comments      |
|---------|---------------------------|------------------|---------------|
| 1.0     | 25 <sup>th</sup> May 2020 | All lead authors | First version |
|         |                           |                  |               |
|         |                           |                  |               |
|         |                           |                  |               |
|         |                           |                  |               |
|         |                           |                  |               |



RESEARCH INFRASTRUCTURE SUSTAINABILITY AND ENHANCEMENT

# **EXECUTIVE SUMMARY**

This deliverable is concerned with Task 3.1 of WP3 of the Euro-Argo RISE project. It describes the design of the final inter-comparison experiment of Deep-Argo sensors, which is based on the technological development and the deployment of a deep 3-headed (SBE41, SBE61 and RBR-Argo<sup>3</sup>) and two 2-headed (SBE41 and RBR) floats. It includes descriptions of the long-term deployment plan, float technical parameters and mission configurations, and of complementary observations that will accompany those deployments. The document will be updated if there is any change in the deployments plans described herein.



RESEARCH INFRASTRUCTURE SUSTAINABILITY AND ENHANCEMENT

# **TABLE OF CONTENT**

| Introduction                                                | 6  |
|-------------------------------------------------------------|----|
| Extending Argo to the deep ocean                            | 6  |
| New technologies                                            | 6  |
| Objectives of the deep float experiment                     | 8  |
| Deployment plan                                             | 9  |
| Chosen area and water mass stability                        | 9  |
| Deployment cruise                                           | 11 |
| 3-headed float                                              | 11 |
| 2-headed floats                                             | 12 |
| Float configurations                                        | 12 |
| Strategy                                                    | 12 |
| Sampling configuration                                      | 12 |
| Final comments and deviations from the initial plans        | 14 |
| Bibliography                                                | 15 |
| Annex I - 3-headed float configuration parameters           | 16 |
| Configuration for the first stage (first 3 cycles)          | 16 |
| Mission configuration                                       | 16 |
| Ice configuration                                           | 19 |
| 3-headed specific configuration: PY                         | 19 |
| 3-headed specific configuration: FR                         | 20 |
| Number of samples/profiles for the 3 first cycles (stage 1) | 21 |
| Core-Argo SBE41CP CTD samples                               | 21 |
| SBE41-SBE61-RBR CTD samples                                 | 21 |
| Configuration for the second stage (cycles >3)              | 22 |
| Number of samples/profile for the other cycles (>3)         | 23 |
| Core-Argo SBE41CP CTD samples                               | 23 |
| SBE41-SBE61-RBR CTD samples                                 | 23 |
| Annex II - 2-headed float configuration                     | 24 |



## **1** Introduction

### Extending Argo to the deep ocean

The extent to which the deep interior will continue to absorb anthropogenic heat is an essential question for environmental projections, which requires a most accurate quantification of the deep thermal structure of ocean basins and their changes. The sparsity of hydrographic measurements, however, only allow relatively uncertain estimates of basin-averaged temperature trends, with occupations of coast-to-coast transects spaced out by some years (1 or 2 years at best, but usually 5 to 10 years). Following the evident need of extending the core-Argo array to the ocean bottom, Johnson et al (2015) proposed a straw plan for long-term implementation of a Deep Argo array. Based on decorrelation time scales from core-Argo float time series at 1800m (about 160 days) and deep temperature variance from repeat hydrography sections, they argue that a hypothetical 5° x 5° x 15 days array (about 1200 floats) would substantially reduce uncertainties in global and regional temperature trends.

Pilot experiments carried out by the Argo international community have already led to significant advancements for the future implementation of a global and homogeneous Deep-Argo array. As of 4<sup>th</sup> May 2020, 172 floats have been deployed, gathering altogether 10411 profiles of temperature and salinity down to either 4000 dbar or 6000 dbar with privileged study zones including the subpolar North Atlantic, the southwestern Pacific and Atlantic, and Southern Ocean seas. As of today, the Argo database contains profiles from Deep Argo platforms. Innovative scientific results have already emerged from those first deployments (Johnson et al, 2019, Kobayashi 2018, Racapé 2019), which have contributed to encourage the next phase of the implementation, aimed to be global and coordinated at the international level.

### New technologies

Beyond demonstrating the scientific interest of Deep-Argo data, several pilot experiments were aimed to demonstrate the ability of floats to acquire good-quality deep data and evaluate the different available sensors (e.g. precision requirements for climate studies) in order to guide the international community in the global implementation of the network. Possible biases and time drifts in the conductivity sensor, as well as a possible pressure effect on the measurements, are sources of important questions in the community and active efforts are still needed to provide the global Deep-Argo array with the best available technology. We particularly need (1) platforms capable of reaching the deep ocean, (2) temperature, salinity and pressure sensors with the accuracy and stability to address the changes in the deep ocean, and (3) methods to evaluate the quality of the observations and perform corrections when necessary.

Three deep sensors are currently available for Argo. The Sea-Bird SBE41CP (0 - 4000 db range), the SBE61 (0 - 6000 db range; upgrade of SBE41/41CP), and the OEM RBRargo3 sensor (0 - 6000 db range; RBRconcerto3 for the standalone version), developed with a totally different technological



RESEARCH INFRASTRUCTURE SUSTAINABILITY AND ENHANCEMENT

approach by RBR Ltd. To inter-compare the respective capabilities of those three sensors, Ifremer has developed "2-headed" (RBR on cap + SBE61 on the side) and "3-headed" (SBE41 on cap + SBE61 & RBR on the sides) multi-sensor Deep-Arvor floats.

As part of Euro-Argo RISE (WP3 - task 3.1), technological developments have been accomplished and short trials at sea (during LOPS campaigns named MICROCO, from the 9<sup>th</sup> to the 16<sup>th</sup> of September 2018 and LOPSTECH19-L1, from the 3<sup>rd</sup> to the 9<sup>th</sup> of May 2019) have been carried out (3-headed float) to ensure a long-term deployment in 2020. Those trials have shown the overall good functioning of the float, as a platform, and have already revealed differences in the behaviors of the 3 sensors (overestimation of salinity by RBR for example, or different pressure response for the SBE41CP) and problems with the housing of the RBR sensors. Biases, temporal drifts, and pressure effects now require to be estimated in a full float mission at sea, with as many profiles as possible.



Picture of the 3-headed float (left) and schematic of the 2-headed float (right)





# Objectives of the deep float experiment

The objective of the full at-sea experiment is to determine and quantify any biases, temporal drifts or pressure effects in the new sensors under typical Argo float mission parameters.

The 3-headed float carries the three sensors that could equip the global Deep-Argo fleet in the coming years: the SBE41 on its cap (standard Argo float CTD), the SBE61 on one flank (upgraded version of the SBE41 designed for the deep ocean), and a new RBR sensor also designed for the deep ocean. Comparisons between those three sensors will enable to assess whether the SBE41 and RBR CTDs meet the precision (for salinity primarily) required for deep-ocean investigations. The SBE61 will be used as reference, together with the shipborne full-depth profile that will be carried out before the deployment (see next section). Evaluation of sensor stability will benefit from the quiescent character of the deployment area and the associated stability of its central and deep water mass properties (temperature and salinity). The stability and accuracy of the pressure sensor will also be assessed, and facilitated owing to the alignment of the three sensors.

However, the RBR sensor mounted on the flank of the 3-headed float is not the final design intended to be mounted on standard deep Argo floats, and data analysis from this particular float will only assess the new inductive technology for the conductivity cell rather than the final generation of deep sensors. This is the purpose of using the 2-headed floats. These floats have on their end caps the final design of the RBR sensor and the SBE61 sensor on the flank. The comparison between the observations from the new sensors would determine if the new RBR inductive technology satisfies the requirements to explore deep and abyssal layers.



# 2 Deployment plan

### Chosen area and water mass stability

The Canary Basin (Figure 1) has been chosen as the deployment area for the 3-headed and the two 2-headed floats because of its central and deep waters being relatively stable over time. This was demonstrated by a 22-year long time series of temperature and salinity of North Atlantic Central Waters (NACW) and the North Atlantic Deep Waters (NADW) in the area (Figure 2), as derived from repeated bi-annual hydrographic surveys carried out by the Spanish Oceanographic Institute (IEO) since 1997 (Tel et al., 2016) ). Such a weak interannual variability of the deep Canarian Basin, as well as its frequent surveying by IEO will ensure a rigorous assessment of the long-term stability of the float sensors at depth.



**Figure 1.** Sketch of the mean ocean circulation in the Canary Basin, where the floats would be deployed. The white dots are the locations of the CTD stations carried out by the IEO's ocean observing system in the area, that goes back to 1997.

The NACW and NADW have a long term trend in salinity over potential temperature of  $-0.001\pm0.003$  and  $-0.002\pm0.001$  per decade (Figure 3), respectively. These values (per year) are smaller than the accuracy of the conductivity sensors in the present generation of Argo floats.





**Figure 2.** Potential temperature/salinity diagram in the westernmost station (24). The color code refers to the date of the survey, from January 1997 to March 2019; and the dots are placed at the following pressure levels : 10, 50, 90, 200, 400, 600, 1400, 2600 and 3600. The inset is a zoom of the diagram over the property area of the NADW.





**Figure 3.** Time series of salinity averaged over the 12°C, 5°C and 2.25°C potential temperature surfaces at station 24. These surfaces are representative of the North Atlantic Central Waters and the upper and lower North Atlantic Deep Waters, respectively. The blue lines indicate a linear robust fit to the data.

#### **Deployment cruise**

#### 3-headed float

It is planned to deploy the 3-headed float during the IEO Raprocan2011 cruise in November 2020. At the time of writing this report (May 2020), the plan is to begin the cruise on November 3<sup>rd</sup> from Santa Cruz de Tenerife and sail to station 24, where the bottom is at 4235 m, to deploy the 3-headed and 2-headed floats. However, and depending on the final duration of the cruise, the deployment may be done further west of station 24, where the hydrographic properties of the water masses are as stable as in station 24, but it would minimize the risk of eastward drift of the floats. In any case, before the deployment of the float a full-depth CTD cast, using a SBE911+ with dual CT sensors, will be carried out. If the weather conditions permit it, the deployment of the floats will be carried out using an inflatable boat to avoid any damage to the float; otherwise, the deployment would be carried out using a crane, although ensuring the floats are deployed smoothly and safely.

Although the departing port is Santa Cruz de Tenerife, the floats will be send before 4th October 2020 to Vigo (Nave logistica flota IEO, Rua da Devesa, 7, 36350, Nigran, Pontevedra.) in order to avoid issues with the local customs authorities, the Canary Islands being in a different custom regime than the rest of Europe.

In the description of the work of the Grant agreement it was planned that IFREMER would deploy the 3-head deep Argo float in the Eastern North Atlantic Subpolar Gyre. However, as indicated in the final



section (see paragraph 4), we experienced delays in having the deep RBR sensor. Given that the Canary basin area is regularly surveyed by IEO oceanographic cruises, as indicated, and because its central and deep waters are being relatively stable over time, we have decided to relocate the deployment to the Canary basin. This change does not affect the objective of the experiment, that is to assess the stability and accuracy of the new deep Argo sensors.

#### 2-headed floats

The two 2-headed floats will be deployed, as indicated in the Description of the work, in the Canary basin. It is planned to deploy them in the cruise to be carried out in March 2021 (see section 4).

# **3** Float configurations

### Strategy

For booth, the 3-headed and 2-headed floats, the mission is divided into two stages:

- <u>The first stage</u> objective is to determine the coherence of the acquisitions between the SBE41, SBE61 and RBR sensors. The sensors will be configured to have high-resolution acquisition with observations every 30 s in the descent and ascent profiles, and every hour during the drifting. This stage will last the first 3 cycles of the float with a 2 days period. The parking depth and profile depth would be 4000 m

- <u>The second stage</u> objective is to determine the long-term stability of the sensors, which will be configured to measure high resolution profiles only during the ascent, at prefixed depths and every 6 hours during the drifting. Additionally, and to maximize the life expectancy of the float, the float cycle periods will be lengthened to 10 days to evaluate the stability of the sensor with long temporal time series. The parking depth would be 3000 m and the profile depth 4000 m

The transition to the second stage will be done by reprogramming the float through the iridium communication system. The floats will be monitored continuously, and if necessary the configuration would be changed via Iridium.

### Sampling configuration

The floats has two sampling configurations, managed by two different electronic boards:

- one dedicated to the core-Argo mission, and only for the SBE41CP sensor;
- one dedicated to the 2-headed/3-headed sensor comparison, which powers and communicates with the two/three sensors: SBE41CP, SBE61 and RBR*argo*<sup>3</sup>.



The following graphs shows the depth sampling strategies for both boards:

- for the Core-Argo, the SBE41CP acquisition (float mission parameters : PM10 to PM14) for both stage 1 and stage 2 would be :



- for the SBE41CP, SBE61 and RBR acquisition (acquisition PCB parameters : FR8 to FR16), stage 1 only:



- for the SBE41CP, SBE61 and RBR acquisition (FR8 to FR16), stage 2 only :



Annex I and II include all the technical and mission parameters configuration at launch, for the first stage (first 3 cycles) and for the second stage configuration.



# 4 Final comments and deviations from the initial plans

During the pressure characterization of one of the new RBR's deep probes, RBR found a mechanical failure associated with the material used to build the housing. They found that the problem affects other instruments with the same model of conductivity cells in the same material batch, including the one intended to be mounted on the Euro-Argo RISE 3-headed float. This fact was unknown at the submission of the proposal.

After several delays, RBR plans (as of May 2020) to deliver the new deep sensor to IFREMER's facilities in August 2020. During the first week of September 2020 the 3-headed float will be tested in the IFREMER's testing pool and directly shipped to Cadiz for its long-term deployment.

In the original Description of the work, it was foreseen that the deployment of the 3-headed float would be done in M20 (MS7 - August 2020). Nevertheless, as indicated above, due to technical issues with the deep RBR probe, we expect a 3-month delay in the achievement of the milestone for the 3-headed float. The deployment plans will be adapted to the available cruises of the IEO at the time of the availability of a fully tested instrument.



Timeline for the 3-headed float

The delayed delivery of RBR deep sensors is also affecting the two 2-headed floats. Although the mechanical test could be done by June 2020, and the adaptation of the software shortly after that, it does not seem feasible to have the floats ready for the November cruise, since the sensors are still not ready due to similar problems than those described for the 3-headed float. In the Description of the work, it was also foreseen that the deployment of the 2-headed float would be done in M20 (MS7 - August 2020) on an already scheduled cruise. As a consequence, the milestone for the deployment of the 2-headed float is expected to be postponed to the next planned cruise of IEO in March 2021.



Timeline for the 2-headed floats

The design of this intercomparison experiment has been done under the COVID-19 crisis and therefore there are two issues that can, substantially, affect the current plans.

The first one is that, although so far there is no information regarding the rescheduling of the IEO's cruises; it may be possible that in the forthcoming weeks, the IEO's float coordinator decides to change the current schedule and this may delay, or even cancel, the November cruise. However, this cruise is part of the long-term ocean observing system of the IEO, and therefore every year two cruises are planned, around March and November.

The second one is that the lockdown associated with COVID-19 may delay the delivery of the deep sensors, or its qualifications. Despite being in close contact with RBR to have the latest information for the delivery of the sensor, partners are facing an unexpected situation due to COVID-19 crisis, and it is still unclear if further delays will happen and how long they could last.

# Bibliography

Johnson, G.C., J.M. Lyman, and S.G. Purkey (2015). <u>Informing Deep Argo Array Design Using Argo and</u> <u>Full-Depth Hydrographic Section Data.</u> J. Atmos. Oceanic Technol., 32, 2187–2198, https://doi.org/10.1175/JTECH-D-15-0139.1

Johnson, G. C., Purkey, S. G., Zilberman, N. V., & Roemmich, D. (2019). Deep Argo quantifies bottom water warming rates in the Southwest Pacific Basin. Geophysical Research Letters, 46, 2662–2669. https://doi.org/10.1029/2018GL081685

Kobayashi, T. (2018). Rapid volume reduction in Antarctic Bottom Water off the Adélie/George V land coast observed by deep floats. Deep Sea Res., 140, 95-117,

https://doi.org/10.1016/j.dsr.2018.07.014.

Racapé, V., Thierry, V., Mercier, H., & Cabanes, C. (2019). ISOW spreading and mixing as revealed by Deep-Argo floats launched in the Charlie-Gibbs Fracture Zone. Journal of Geophysical Research: Oceans, 124, 6787– 6808. <u>https://doi.org/10.1029/2019JC015040</u>

Tel, E., Balbin, R., Cabanas, J.-M., Garcia, M.-J., Garcia-Martinez, M. C., Gonzalez-Pola, C., Lavin, A., Lopez-Jurado, J.-L., Rodriguez, C., Ruiz-Villarreal, M., Sánchez-Leal, R. F., Vargas-Yáñez, M., and Vélez-Belchí, P., (2016): IEOOS: the Spanish Institute of Oceanography Observing System, Ocean Sci., 12, 345–353, https://doi.org/10.5194/os-12-345-2016.

Deep float experiment design - D3.1 V1.0



# **Annex I - 3-headed float configuration parameters**

## Configuration for the first stage (first 3 cycles)

The tables below give the mission and technical parameters programmed at launch, and valid for the first three cycles.

#### Mission configuration

The green cells are for the sampling strategy and the yellow ones for the cycling strategy

| #    | Description                           | default Value | Config.                              | Unit    |
|------|---------------------------------------|---------------|--------------------------------------|---------|
| PM0  | Number of Cycles                      | 255           | 255                                  | -       |
| PM1  | Cycle Period                          | 10            | 2                                    | days    |
| PM2  | First Cycle Period                    | 2             | 3                                    | days    |
| PM3  | Estimated Surface Arrival Time        | 6             | 6                                    | hours   |
| PM4  | Delay Before Mission                  | 0             | 30                                   | min     |
| PM5  | Descent Sampling Period               | 0             | <b>30</b><br>during 3 first cycles   | S       |
| PM6  | Drift Sampling Period                 | 12            | <b>1</b><br>during 3 first cycles    | hours   |
| PM7  | Ascent Sampling Period                | 10            | 10                                   | s       |
| PM8  | Drift Depth                           | 1000          | <b>4000</b><br>during 3 first cycles | dbar    |
| PM9  | Profile Depth                         | 3500          | 4000                                 | dbar    |
| PM10 | Surface/Intermediate Layers Threshold | 10            | 10                                   | dbar    |
| PM11 | Intermediate/Bottom Layers Threshold  | 200           | 200                                  | dbar    |
| PM12 | Surface Slices Thickness              | 1             | 2                                    | dbar    |
| PM13 | Intermediate Slices Thickness         | 10            | 20                                   | dbar    |
| PM14 | Bottom Slices Thickness               | 25            | 50                                   | dbar    |
| PM15 | End Of Life Transmission Period       | 60            | 60                                   | minutes |



| PM16 | 5 Inter-Cyle Surface Waiting |              |       | 0          | 0  | minutes |         |
|------|------------------------------|--------------|-------|------------|----|---------|---------|
| PM17 | Surface<br>Groundin          | Waiting<br>g | After | Subsurface | 60 | 60      | minutes |

### Technical configuration

| #     | Description                                             | default Value | Config. | Unit            |
|-------|---------------------------------------------------------|---------------|---------|-----------------|
| PT 0  | Max valve activation at surface                         | 1100          | 2400    | csec            |
| PT 1  | Max valve volume during descent and repositioning       | 17            | 17      | cm <sup>3</sup> |
| PT 2  | Max pump activation during repositioning                | 450           | 450     | csec            |
| PT 3  | Pump duration during ascent                             | 1120          | 1120    | csec            |
| PT 4  | Pump duration for surfacing                             | 24000         | 32000   | csec            |
| PT 5  | Pressure tolerance for positioning (+/-)                | 50            | 50      | dbar            |
| PT 6  | Max pressure before emergency ascent                    | 4220          | 4220    | dbar            |
| PT 7  | 1st threshold for buoyancy reduction                    | 2             | 2       | dbar            |
| PT 8  | 2nd threshold for buoyancy reduction                    | 7             | 12      | dbar            |
| PT 9  | Repositioning number threshold                          | 2             | 2       | -               |
| PT 10 | Grounding management mode                               | 0             | 0       | -               |
| PT 11 | Max valve volume before grounding detection             | 47            | 47      | cm <sup>3</sup> |
| PT 12 | Grounding management threshold                          | 200           | 200     | dbar            |
| PT 13 | Pressure shift on grounding                             | 100           | 100     | dbar            |
| PT 14 | Pressure tolerance during drift (+/-)                   | 50            | 50      | dbar            |
| PT 15 | CTD acquisition mode (1: continuous ; 2: spot sampling) | 1             | 1       | -               |
| PT 16 | Alternate profile period (1: disabled)                  | 1             | 1       | days            |



| PT 17 | Alternate profile depth                                  | 4000  | 4000               | dbar   |
|-------|----------------------------------------------------------|-------|--------------------|--------|
| PT 18 | Average descent speed (mm/s)                             | 30    | 28                 | mm/sec |
| PT 19 | Pressure increment                                       | 0     | 0                  | dbar   |
| PT 20 | Cutoff pressure of CTD pump during ascent                | 5     | 5                  | dbar   |
| PT 21 | Auxiliary sensors measure (0: none; 1: dissolved oxygen) | 0     | 0                  | -      |
| PT 22 | Ascent end pressure                                      | 10    | 10                 | dBar   |
| PT 23 | Average ascent speed                                     | 90    | 90                 | mm/sec |
| PT 24 | Ascent speed control period                              | 2     | 2                  | min    |
| PT 25 | Minimum pressure difference during ascent speed control  | 10    | 10                 | dbar   |
| PT 26 | Descent speed control period                             | 5     | 5                  | min    |
| PT 27 | Minimum pressure difference during descent speed control | 4     | 4                  | dbar   |
| PT 28 | GPS session retries                                      | 24    | 24                 | -      |
| PT 29 | Hydraulic message transmission (0: no; 1: yes)           | 1     | 1                  | -      |
| PT 30 | In air acq.: Sampling period                             | 30    | 30                 | s      |
| PT 31 | In air acq.: Acquisition duration                        | 5     | 5                  | min    |
| PT 32 | In air acq.: Duration of pumping at surface              | 30000 | 30000              | CS     |
| PT 33 | In air acq.: Periodicity measurement                     | 0     | 0                  |        |
| PT 34 | Iridium session timeout                                  | 60    | 60                 | min    |
| PT 35 | Vacuum coef A                                            | х     | float<br>dependant | -      |
| PT 36 | Vacuum coef B                                            | х     | float<br>dependant | -      |



RESEARCH INFRASTRUCTURE SUSTAINABILITY AND ENHANCEMENT

#### Ice configuration

Although there is no ice in the deployment area, the float's algorithm still needs these parameters to work properly.

| #     |                                                                                 | Default<br>value | Config. | Units |
|-------|---------------------------------------------------------------------------------|------------------|---------|-------|
| PG 0  | ICE DETECTION : Number of days without emergence (PG0), after one ISA detection | 10               | 10      | days  |
| PG 1  | ICE DETECTION : Number of days, with ISA active,<br>before force an emergence   | 90               | 90      | days  |
| PG 2  | ISA : Start pressure (PG2)                                                      | 50               | 50      | dbar  |
| PG 3  | ISA : Stop pressure (PG3)                                                       | 20               | 20      | dbar  |
| PG 4  | ISA : Temperature median (PG4)                                                  | -1790            | -1790   | m°C   |
| PG 5  | ISA : Deceleration threshold (PG5)                                              | 150              | 150     | dbar  |
| PG 6  | ISA : Scrutation pressure delay on ascent (PG6)                                 | 2                | 2       | min   |
| PG 7  | ISA : Stabilization pressure on ascent (PG7)                                    | 4                | 10      | dbar  |
| PG 8  | ISA : Pumping activation delay on ascent (PG8)                                  | 500              | 1120    | CS    |
| PG 9  | SATELLITE MASK : Session timeout (PG9)                                          | 5                | 5       | min   |
| PG 10 | ASCENT HANGING : Confirmation delay (PG10)                                      | 30               | 30      | min   |
| PG 11 | BUOYANCY INVERSION : Offset pressure (PG11)                                     | 20               | 20      | dbar  |
| PG 12 | BUOYANCY INVERSION : EV volume per action<br>(PG12)                             | 9                | 9       | cm3   |
| PG 13 | BUOYANCY INVERSION : EV volume max (PG13)                                       | 900              | 900     | cm3   |

#### 3-headed specific configuration: PY

| #     | Description                           | default<br>Value | Config. | Unit |
|-------|---------------------------------------|------------------|---------|------|
| PY 00 | 3-headed RBR and/or SBE61 acquisition | 1                | 1       | -    |



## 3-headed specific configuration: FR

| #     | Description                                                                        | default<br>Value | Config.                                | Unit |
|-------|------------------------------------------------------------------------------------|------------------|----------------------------------------|------|
| FR 00 | Cycle**                                                                            | 0                | 0                                      | -    |
| FR 01 | RBR status: 0 off - 1 on                                                           | 1                | 1                                      | -    |
| FR 02 | SBE61 status: 0 off - 1 on                                                         | 1                | 1                                      | -    |
| FR 03 | RBR synchro - Rank of the sample chosen before the arrival of the SBE41 frame      | 2                | 2                                      | -    |
| FR 04 | SBE61 synchro - Rank of the sample chosen before<br>the arrival of the SBE41 frame | 1                | 1                                      | -    |
| FR 05 | Max delay between SBE41 and SBE61                                                  | 280              | 280                                    | ms   |
| FR 06 | Poffset SBE61                                                                      | 0                | 0                                      | cbar |
| FR 07 | Pcutoff SBE61                                                                      | 0                | 50                                     | cbar |
| FR 08 | Threshold bottom / near bottom                                                     | 3000             | 3000                                   | dbar |
| FR 09 | Threshold near bottom / intermediate                                               | 2000             | 90                                     | dbar |
| FR 10 | Threshold intermediate / near surface                                              | 200              | 50                                     | dbar |
| FR 11 | Threshold near surface / surface                                                   | 10               | 10                                     | dbar |
| FR 12 | Thickness in bottom layers                                                         | 400              | <b>100</b><br>during 3 first<br>cycles | cbar |
| FR 13 | Thickness in near bottom layer                                                     | 250              | <b>150</b><br>during 3 first<br>cycles | cbar |
| FR 14 | Thickness in intermediate layer                                                    | 200              | <b>2</b><br>during 3 first<br>cycles   | cbar |
| FR 15 | Thickness in near surface layer                                                    | 100              | <b>25</b><br>during 3 first<br>cycles  | cbar |
| FR 16 | Thickness in surface layer                                                         | 10               | 10<br>during 3 first<br>cycles         | cbar |



| FR 17 | IRIDIUM PT14 (FR17=PT14)** | Х | 0 | - |
|-------|----------------------------|---|---|---|
| FR 18 | IRIDIUM PW7 (FR18=PW7)**   | Х | 0 | - |
| FR 19 | Do not use**               | Х | 0 | - |

#### Number of samples/profiles for the 3 first cycles (stage 1)

### Core-Argo SBE41CP CTD samples

| Zone         | Layer (dbars) | Sample thickness<br>(dbars) | SBE41 samples<br>( <u>for descent +</u><br><u>descent</u> ) |
|--------------|---------------|-----------------------------|-------------------------------------------------------------|
| Surface      | 0-10          | 2                           | 5*2=10                                                      |
| Intermediate | 10-200        | 20                          | 9.5*2=19                                                    |
| Bottom       | 200-4000      | 50                          | 76*2=152                                                    |
|              |               | Total                       | 181                                                         |

Estimating 15 SBE41-only CTD samples/packet, 3 packet/SBD, 3 SBD/min, the transmission dedicated to SBE41-SBE61-RBR triplets would be **2 minutes**.

### SBE41-SBE61-RBR CTD samples

| Zone         | Layer (dbars) | Sample thickness<br>(dbars) | SBE41-SBE61-RBR<br>CTD samples<br>( <u>for descent + descent</u> ) |
|--------------|---------------|-----------------------------|--------------------------------------------------------------------|
| Surface      | 0-10          | 1                           | 10*2 = 20                                                          |
| Near surface | 10-50         | 2.5                         | 16*2 = 32                                                          |
| Intermediate | 50-90         | 0.2                         | 200*2 = 400                                                        |



| Near Bottom | 90-3000   | 15    | 194*2 = 388 |
|-------------|-----------|-------|-------------|
| Bottom      | 3000-4000 | 10    | 100*2 = 200 |
|             |           | Total | 1040        |

Estimating 4 SBE41-SBE61-RBR CTD samples/packet, 3 packet/SBD, 3 SBD/min, the transmission dedicated to SBE41-SBE61-RBR samples would be **29 min**.

#### Estimated transmission duration - total

Technical and configuration packets: approx 9 packets = 1 min

SBE41 only : 2 min

SBE41-SBE61-RBR: 29 min

#### TOTAL: 32 min.

### Configuration for the second stage (cycles >3)

Only the differences from the configuration at launch are listed here. This change is not automatic but must be sent remotely with Iridium.

| #   | Description             | default Value | Config.                        | Unit |
|-----|-------------------------|---------------|--------------------------------|------|
| PM1 | Cycle Period            | 10            | <b>10</b><br>after 3rd cycle   | days |
| PM5 | Descent Sampling Period | 0             | O<br>after 3rd cycle           | S    |
| PM6 | Drift Sampling Period   | 12            | <b>6</b><br>after 3rd cycle    | hour |
| PM8 | Drift Depth             | 1000          | <b>3000</b><br>after 3rd cycle | dbar |

| #     | Description                | default<br>Value | Config. | Unit |
|-------|----------------------------|------------------|---------|------|
| FR 12 | Thickness in bottom layers | 400              | 50      | cbar |



|       |                                 |     | after 3rd cycle              |      |
|-------|---------------------------------|-----|------------------------------|------|
| FR 13 | Thickness in near bottom layer  | 250 | 60<br>after 3rd cycle        | cbar |
| FR 14 | Thickness in intermediate layer | 200 | <b>2</b><br>after 3rd cycle  | cbar |
| FR 15 | Thickness in near surface layer | 100 | <b>10</b><br>after 3rd cycle | cbar |
| FR 16 | Thickness in surface layer      | 10  | <b>5</b><br>after 3rd cycle  | cbar |

## Number of samples/profile for the other cycles (>3)

# Core-Argo SBE41CP CTD samples

| Zone         | Layer (dbars) | Sample thickness<br>(dbars) | SBE41 samples<br>(ascent only) |
|--------------|---------------|-----------------------------|--------------------------------|
| Surface      | 0-10          | 2                           | 5                              |
| Intermediate | 10-200        | 20                          | 9.5                            |
| Bottom       | 200-4000      | 50                          | 76                             |
|              |               | Total                       | 91                             |

Based on the following: 15 SBE41-only CTD samples/packet, 3 packet/SBD, 3 SBD/min, the estimated transmission dedicated to SBE41-SBE61-RBR triplets is : **1 min**.

#### SBE41-SBE61-RBR CTD samples

| Zone    | Layer (dbars) | Sample thickness<br>(dbars) | SBE41-SBE61-RBR<br>CTD samples<br>(ascent only) |
|---------|---------------|-----------------------------|-------------------------------------------------|
| Surface | 0-10          | 0.5                         | 20                                              |



| Near surface | 10-50     | 1     | 40  |
|--------------|-----------|-------|-----|
| Intermediate | 50-90     | 0.2   | 200 |
| Near Bottom  | 90-3000   | 6     | 485 |
| Bottom       | 3000-4000 | 5     | 200 |
|              |           | Total | 945 |

Based on the following: 4 SBE41-SBE61-RBR CTD samples/packet, 3 packet/SBD, 3 SBD/min, the estimated transmission dedicated to SBE41-SBE61-RBR samples is : 26 min.

Estimated transmission duration - total

Technical and configuration packets: approx 9 packets = 1 min

SBE41 only : 1 min

SBE41-SBE61-RBR: 26 min

TOTAL: 28 min.

# Annex II - 2-headed float configuration

The configuration of the 2-headed floats is the same as the 3-headed float, except:

| #     | Description              | default<br>Value | Config. | Unit |
|-------|--------------------------|------------------|---------|------|
| FR 01 | RBR status: 0 off - 1 on | 1                | 0*      | -    |

\* RBR sensor will be mounted directly on the Deep-Arvor, and data will be acquired according to PM parameters.