

Seasonal variability of nitrate concentrations in the Mediterranean Sea: Contribution of Bio-Argo floats

O. Pasqueron de Fommervault, F. D'Ortenzio, A. Mangin, R. Serra, K. Johnson, H. Claustre, C. Schmechtig, E. Leymarie, C. Migon, P. Conan, F. Besson, G. Obolensky, and A. Poteau

5TH Euro-Argo User Workshop March 2015 – Brest, France

Outline

I. Introduction

- II. NAOS project
- III. Nitrate sensor calibration
- IV. Results
- V. Conclusion

The Mediterranean Sea

- One of the most studied oceans of the world (Williams, 1998)
- Low nutrient concentration basin (*McGill 1966, Krom et al. 1991*)
- One of the largest nutrient-depleted area in the world (Ignatiades et al. 2009)

The Mediterranean Sea

- One of the most studied oceans of the world (Williams, 1998)
- Low nutrient concentration basin (*McGill 1966, Krom et al. 1991*)
- One of the largest nutrient-depleted area in the world (*Ignatiades et al. 2009*)

The nutrient dataset

- MEDAR-MEDATLAS, MATER and SESAME programs as well as from specific cruises (*Lavezza et al., 2011*)
- Quality-controlled data (Lavigne et al., 2013)

Spatial distribution

Good description of the spatial distribution of $[NO_3]$

Spatial distribution

Good description of the spatial distribution of $[NO_3]$

West-to-east gradient of decreasing concentrations (e.g. Moutin et Prieur 2012; Pujo-Pay et al., 2011; Ribera d'Alcalà et al., 2003)

Spatial distribution

Good description of the spatial distribution of $[NO_3]$

Temporal distribution

Seasonal variability poorly known

West-to-east gradient of decreasing concentrations (e.g. Moutin et Prieur 2012; Pujo-Pay et al., 2011; Ribera d'Alcalà et al., 2003)

Spatial distribution

Good description of the spatial distribution of $[NO_3]$

Temporal distribution

Seasonal variability poorly known

West-to-east gradient of decreasing concentrations (e.g. Moutin et Prieur 2012; Pujo-Pay et al., 2011; Ribera d'Alcalà et al., 2003)

↔ Clear seasonal pattern in the NW Med \rightarrow [NO₃]_{surf} increase from December to March

I. Introduction

II. NAOS project

- III. Nitrate sensor calibration
- IV. Results
- V. Conclusion

What is NAOS (Novel Argo Ocean observing System) ?

- A French long-term project (EQUIPEX 2009-2019)
- Aims to improve the French and European contributions to Argo
- Implement the first basin scale network of Bio-Argo floats

33 Bio-Argo floats deployed in the Mediterranean Sea (in two successive waves: 2013 and 2015)

What is NAOS (Novel Argo Ocean observing System) ?

- A French long-term project (EQUIPEX 2009-2019)
- Aims to improve the French and European contributions to Argo
- Implement the first basin scale network of Bio-Argo floats

33 Bio-Argo floats deployed in the Mediterranean Sea (in two successive waves: 2013 and 2015)

Bio-Argo floats

- PROVOR CTSO3 equipped with IRIDIUM antenna
- Profile realized from 0 to 1000m
- Vertical resolution from 10 to 30m
- Temporal resolution of 5 days, improved (*i.e.* 1 day) during transition periods

What is NAOS (Novel Argo Ocean observing System) ?

- A French long-term project (EQUIPEX 2009-2019)
- Aims to improve the French and European contributions to Argo
- Implement the first basin scale network of Bio-Argo floats

33 Bio-Argo floats deployed in the Mediterranean Sea (in two successive waves: 2013 and 2015)

Bio-Argo floats

- PROVOR CTSO3 equipped with IRIDIUM antenna
- Profile realized from 0 to 1000m
- Vertical resolution from 10 to 30m
- Temporal resolution of 5 days, improved (*i.e.* 1 day) during transition periods

Only six [NO3] floats in the first wave

Deployment plan

- Cover the west-to-east gradient of decreasing nitrate concentrations
- Deployment strategy based on international consensus in order to maintain as long as possible floats in a "homogenous" zone.

Details

http://en.naos-equipex.fr/News/Roadmap-for-the-deployment-decision-of-the-NAOS-Bio-Argo-Mediterranean-floats

Deployment plan

- Cover the west-to-east gradient of decreasing nitrate concentrations
- Deployment strategy based on international consensus in order to maintain as long as possible floats in a "homogenous" zone.

Details

http://en.naos-equipex.fr/News/Roadmap-for-the-deployment-decision-of-the-NAOS-Bio-Argo-Mediterranean-floats

Deployment plan

- Cover the west-to-east gradient of decreasing nitrate concentrations
- Deployment strategy based on international consensus in order to maintain as long as possible floats in a "homogenous" zone.

Details

http://en.naos-equipex.fr/News/Roadmap-for-the-deployment-decision-of-the-NAOS-Bio-Argo-Mediterranean-floats

Deployment plan

- Cover the west-to-east gradient of decreasing nitrate concentrations
- Deployment strategy based on international consensus in order to maintain as long as possible floats in a "homogenous" zone.

Details

http://en.naos-equipex.fr/News/Roadmap-for-the-deployment-decision-of-the-NAOS-Bio-Argo-Mediterranean-floats

Deployment plan

- Cover the west-to-east gradient of decreasing nitrate concentrations
- Deployment strategy based on international consensus in order to maintain as long as possible floats in a "homogenous" zone.

http://en.naos-equipex.fr/News/Roadmap-for-the-deployment-decision-of-the-NAOS-Bio-Argo-Mediterranean-floats

Outline

- I. Introduction
- II. NAOS project

III. Nitrate sensor calibration

- IV. Results
- V. Conclusion

Measurement principle

- absorption of light at ultraviolet wavelengths (217-240nm)
- Beer-Lambert law $A(\lambda) = [C_1] \cdot \varepsilon_1(\lambda) + [C_2] \cdot \varepsilon_2(\lambda) + \dots$

Measurement principle

- absorption of light at ultraviolet wavelengths (217-240nm)
- Beer-Lambert law $A(\lambda) = [C_1] \cdot \varepsilon_1(\lambda) + [C_2] \cdot \varepsilon_2(\lambda) + \dots$

TCSS algorithm (Sakamoto et al., 2009)

The observed salinity directly taken into account and subtracted to the total absorbance

Nitrate absorption

$$A(\lambda) - S.ESWtis(\lambda) = [NO_3]ENO3(\lambda) + \alpha_1 + \alpha_2 \cdot \lambda$$
Extinction coefficients are reported in the calibration file (© Satlantic)

Sea water absorption with temperature correction

Measurement principle

- absorption of light at ultraviolet wavelengths (217-240nm)
- Beer-Lambert law $A(\lambda) = [C_1] \cdot \varepsilon_1(\lambda) + [C_2] \cdot \varepsilon_2(\lambda) + \dots$

TCSS algorithm (Sakamoto et al., 2009)

- The observed salinity directly taken into account and subtracted to the total absorbance
- temperature-dependent correction of seawater extinction coefficient

Nitrate absorption

$$A(\lambda) - S. ESWtis(\lambda) = [NO_3]ENO3(\lambda) + \alpha_1 + \alpha_2 \cdot \lambda$$

Extinction coefficients are reported
in the calibration file (© Satlantic)

Sea water absorption with temperature correction

ESWtis = ESWtcal.(ASWtis/ASWtcal)

 $\begin{aligned} ASWtis_{\lambda_{i}} &= (1.1500276 + 0.02840 \ Tis). \ e^{(-0.3101349 + 0.001222 \ Tis)} . \ (\lambda_{i} - wl) \\ ASWtcal_{\lambda_{i}} &= (1.1500276 + 0.02840 \ Tcal). \ e^{(-0.3101349 + 0.001222 \ Tcal)} . \ (\lambda_{i} - wl) \end{aligned}$

Measurement principle

- absorption of light at ultraviolet wavelengths (217-240nm)
- Beer-Lambert law $A(\lambda) = [C_1] \cdot \varepsilon_1(\lambda) + [C_2] \cdot \varepsilon_2(\lambda) + \dots$

TCSS algorithm (Sakamoto et al., 2009)

- The observed salinity directly taken into account and subtracted to the total absorbance
- temperature-dependent correction of seawater extinction coefficient

Nitrate absorption

$$A(\lambda) - S. ESWtis(\lambda) = [NO_3]ENO3(\lambda) + \alpha_1 + \alpha_2 \cdot \lambda$$

in the calibration file (*© Satlantic*)

Sea water absorption with temperature correction

ESWtis = ESWtcal.(ASWtis/ASWtcal)

 $\begin{aligned} ASWtis_{\lambda_{i}} &= (1.1500276 + 0.02840 \, Tis). \, e^{(-0.3101349 + 0.001222 \, Tis)} . \, (\lambda_{i} - wl) \\ ASWtcal_{\lambda_{i}} &= (1.1500276 + 0.02840 \, Tcal). \, e^{(-0.3101349 + 0.001222 \, Tcal)} . \, (\lambda_{i} - wl) \end{aligned}$

The measurement is sensitive and problematic in the Mediterranean Sea

- \checkmark Low concentration (from 0 to 9 μ M)
- ✓ High salinity

- *wl* treated as a tunable parameter (*Johnson, 2014*)
 - ✓ bias in [NO₃] above about 20°C

- *wl* treated as a tunable parameter (*Johnson, 2014*)
 - ✓ bias in [NO₃] above about 20°C
- Vertical lag between CTD and SUNA (~ 1.5m)
 - ✓ T and S are interpolated at the depth of the SUNA

- *wl* treated as a tunable parameter (*Johnson, 2014*)
 - ✓ bias in [NO₃] above about 20°C
- Vertical lag between CTD and SUNA (~ 1.5m)
 - \checkmark T and S are interpolated at the depth of the SUNA
- Long-term drift
 - ✓ Slope of a linear regression of $[NO_3]_{1000m}$ versus cycle number

- *wl* treated as a tunable parameter (*Johnson, 2014*)
 - ✓ bias in [NO₃] above about 20°C
- Vertical lag between CTD and SUNA (~ 1.5m)
 - \checkmark T and S are interpolated at the depth of the SUNA
- Long-term drift
 - ✓ Slope of a linear regression of $[NO_3]_{1000m}$ versus cycle number
- Constant offset
 - \checkmark Comparison with climatological values in summer in surface (0µM)

Additional corrections

- wl treated as a tunable parameter (Johnson, 2014)
 - ✓ bias in [NO₃] above about 20°C
- Vertical lag between CTD and SUNA (~ 1.5m)
 - ✓ T and S are interpolated at the depth of the SUNA
- Long-term drift
 - ✓ Slope of a linear regression of $[NO_3]_{1000m}$ versus cycle number
- Constant offset
 - \checkmark Comparison with climatological values in summer in surface (0µM)

Not specific to the Mediterranean Sea important contribution to the measured value

- ✤ [NO₃]_{1000m} underestimated up to 60% in the Eastern Basin
- Pressure-dependence of bromide spectrum is suspected

- [NO₃]_{1000m} underestimated up to 60% in the Eastern Basin
- Pressure-dependence of bromide spectrum is suspected
- Empirical additional correction applied to the extinction coefficient of seawater

$$ESW_{(\lambda,Tis,P)} = ESW_{(\lambda,Tis)} \cdot \left(1 - 0.02 \cdot \frac{P}{1000}\right)$$

- [NO₃]_{1000m} underestimated up to 60% in the Eastern Basin
- Pressure-dependence of bromide spectrum is suspected
- Empirical additional correction applied to the extinction coefficient of seawater

$$ESW_{(\lambda,Tis,P)} = ESW_{(\lambda,Tis)} \cdot \left(1 - 0.02 \cdot \frac{P}{1000}\right)$$

- [NO₃]_{1000m} underestimated up to 60% in the Eastern Basin
- Pressure-dependence of bromide spectrum is suspected
- Empirical additional correction applied to the extinction coefficient of seawater

$$ESW_{(\lambda,Tis,P)} = ESW_{(\lambda,Tis)} \cdot \left(1 - 0.02 \cdot \frac{P}{1000}\right)$$

Pressure correction

- [NO₃]_{1000m} underestimated up to 60% in the Eastern Basin
- Pressure-dependence of bromide spectrum is suspected
- Empirical additional correction applied to the extinction coefficient of seawater

$$ESW_{(\lambda,Tis,P)} = ESW_{(\lambda,Tis)} \cdot \left(1 - 0.02 \cdot \frac{P}{1000}\right)$$

<u>Seasiderendezvous</u>

Romain.Serra@acri-he.fr http://www.seasiderendezvous.eu

<u>Seasiderendezvous</u>

Romain.Serra@acri-he.fr http://www.seasiderendezvous.eu

<u>Seasiderendezvous</u>

Romain.Serra@acri-he.fr http://www.seasiderendezvous.eu

Outline

- I. Introduction
- II. NAOS program
- III. Nitrate sensor calibration

IV.Results

V. Conclusion

The [NO₃] field at high temporal resolution: 2013-2014 period

Float time-series

Float time-series

- Seasonal cycle in the NW Med
- ✤ [NO₃]_{surf} reaches 5µM
- $[NO_3]_{surf}$ around $0\mu M$ in the other areas

- Low variability (except in the TYR)
- West-to-east gradient of decreasing [NO₃]

- High [NO₃]_{surf} are measured since December, without deep convection
- The depth reached by the MLD poorly determine [NO₃]_{surf}
- $[NO_3]_{surf}$ often found > 4µM (15% of the profiles in the historical database)

$$Nsup(t) = \left[\int_0^{MLD(t+\Delta t)} NO3(t,z) \, dz \, \cdot \frac{Zeu(t+\Delta t)}{MLD(t+\Delta t)}\right] - \left[\int_0^{Zeu(t+\Delta t)} NO3(t,z) \, dz\right]$$

$$Nsup(t) = \left[\int_0^{MLD(t+\Delta t)} NO3(t,z) \, dz \, \cdot \frac{Zeu(t+\Delta t)}{MLD(t+\Delta t)}\right] - \left[\int_0^{Zeu(t+\Delta t)} NO3(t,z) \, dz\right]$$

$$Nsup(t) = \left[\int_0^{MLD(t+\Delta t)} NO3(t,z) \, dz \, \cdot \frac{Zeu(t+\Delta t)}{MLD(t+\Delta t)}\right] - \left[\int_0^{Zeu(t+\Delta t)} NO3(t,z) \, dz\right]$$

MLD deepening events in the NW Med

$$Nsup(t) = \left[\int_0^{MLD(t+\Delta t)} NO3(t,z) \, dz \, \cdot \frac{Zeu(t+\Delta t)}{MLD(t+\Delta t)}\right] - \left[\int_0^{Zeu(t+\Delta t)} NO3(t,z) \, dz\right]$$

✤ May trigger a NP ranging from 49 to 67 gC m⁻² (typical values for the area)

$$Nsup(t) = \left[\int_0^{MLD(t+\Delta t)} NO3(t,z) \, dz \, \cdot \frac{Zeu(t+\Delta t)}{MLD(t+\Delta t)}\right] - \left[\int_0^{Zeu(t+\Delta t)} NO3(t,z) \, dz\right]$$

- ✤ May trigger a NP ranging from 49 to 67 gC m⁻² (typical values for the area)
- 20-25 times higher than atmospheric inputs (Markaki et al., 2010)
- 100 times higher than upward diffusion

Outline

- I. Introduction
- II. Database
- III. Nitrate sensor calibration
- IV. Results

V. Conclusion

- Deployment strategy was successful
 - \checkmark only one float moved from the initial bioregion.

- Deployment strategy was successful
 - ✓ only one float moved from the initial bioregion.
- Reliable [NO₃] which confirm the classical view of the basin
 - ✓ Decreasing [NO3] from west to east
 - ✓ Nitracline deepening from west to east

- Deployment strategy was successful
 - ✓ only one float moved from the initial bioregion.
- Reliable [NO₃] which confirm the classical view of the basin
 - ✓ Decreasing [NO3] from west to east
 - ✓ Nitracline deepening from west to east
- Monitoring of a complete annual cycle
 - ✓ MLD and nitracline never cross in the TYR, ION and LEV
 - ✓ NW Med is the single area where MLD cross the nitracline
 - ✓ Frequency, number of events etc. a least as important than the MLD depth

<u>Outlook</u>

Next wave of NAOS deployments (14 floats) will be performed on a dedicated cruise (Bio-Argo-Med) in May 2015.

- All second wave floats equipped with [NO₃] sensor
- Still active floats will be recovered

Interannual variability in [NO₃] seasonal cycle Confirm/refute some statements

<u>Outlook</u>

Next wave of NAOS deployments (14 floats) will be performed on a dedicated cruise (Bio-Argo-Med) in May 2015.

- All second wave floats equipped with [NO₃] sensor
- Still active floats will be recovered

Thank you for your attention

Interannual variability in [NO₃] seasonal cycle

Climatological pattern

	NW Med		TYR		ION		LEV	
	[NO3] _{surf} >0.5µM	profiles available	[[NO3]surf >0.5µM	profiles available	[NO3] _{surf} >0.5µM	profiles available	[NO3] _{surf} >0.5µM	profiles available
JAN	94%	18	15%	13	26%	34	0%	3
FEB	100%	13	33%	3	33%	3	14%	7
MAR	97%	33	0%	4	0%	1	66%	3
APR	0%	5	0%	5	0%	24	0%	17
MAY	0%	7	0%	19	0%	38	0%	1
JUN	0%	3	0%	11	-	0	0%	1
JUL	0%	3	0%	5	-	0	-	0
AUG	0%	8	-	0	-	0	0%	3
SEP	0%	36	0%	26	0%	14	0%	2
OCT	0%	10	5%	54	0%	9	0%	30
NOV	18%	11	-	0	0%	14	0%	9
DEC	29%	7	0%	7	0%	2	0%	1

> Difference of 20% at depth (deep nitrate value ~ 8μ M)

> Difference of 45% at depth (deep nitrate value ~ 5μ M)

> Difference of 35% at depth (deep nitrate value ~ 6μ M)

North Atlantic float

> Difference of 3% at depth (deep nitrate value ~ 25μ M)

Nitrate Input estimation

$$Nsup(t) = \left[\int_{0}^{MLD(t+\Delta t)} NO3(t,z) dz \cdot \frac{Zeu(t+\Delta t)}{MLD(t+\Delta t)}\right] - \left[\int_{0}^{Zeu(t+\Delta t)} NO3(t,z) dz\right]$$

Surface [NO3] example of the float 018c (no drift and offset correction)

Bias reaching 1.5µM in the eastern basin (i.e. 30% of the deep values)