How Bio-Argo profiling floats can help to improve our understanding of mean chlorophyll seasonal distribution? A case study in the Mediterranean Sea

<u>H. Lavigne¹</u>, F. D'Ortenzio², M. Ribera D'Alcalà³, H. Claustre², R. Sauzède² and M. Gacic¹

¹ OGS (Trieste, Italy) ² LOV - CNRS/UPMC (Villefranche sur mer, France) ³ SZN (Napoli, Italy)

5th Euro-Argo User Workshop – 16-17 March 2015, Brest

Phytoplankton seasonality

Indicates on the general ecosystem functioning (Longhurst, 1998).

- Phytoplankton blooms contribute to oceanic new primary production (oceanic NPP = 50% of the total NPP, Fields et al., 1998).
- Higher trophic levels depend on the timing of phytoplankton blooms (Platt et al., 2003; Edwards and Richardson, 2004)

Phytoplankton biomass is commonly estimated by chlorophyll-a concentration (Chl-a).

Ocean color satellite data highly contributes to increase our understanding of Chl-a over the Mediterranean Sea

From ocean color data, a variety of annual cycles of surface Chl-a were observed over the Mediterranean basin.

- Some areas display a mid-latitude like seasonality (characterized by a spring bloom).
- Other areas display a subtropical like seasonality (characterized by higher surface Chl-a values during winter than during summer).

Annual cycles of ChI-a derived from ocean color data allowed for the production of a **bioregionalization** of the Mediterranean Sea (D'Ortenzio and Ribera d'Alcalà, 2009)

What is known about the seasonality of the vertical distribution of Chl-a in the Mediterranean?

MEDATLAS Chl-a climatology (MEDAR/MEDATLAS project, Maillard and Coauthors, 2005).

- Deep Chlorophyll Maximum (DCM) is ubiquitous from May to September.
- "mixed" profiles have been observed during winter.
- At spring, profiles with high surface Chl-a values have been observed in at the Med North-West.

Main limitations:

- **ü** Based on Chl-a estimations derived from seawater samples (very scarce)
- ü Seasonal climatology
- ü Low vertical resolution (12 points on the vertical)

Mean seasonal variations of Chl-a in the Gulf of Lion region. (Manca et al, 2004)

Available Chl-a observations at 50m depth, in the MEDAR database. (http://modb.oce.ulg.ac.be/)

The Chl-a fluorescence to overcome constraints related to Chl-a data derived from water samples

Chl-a Fluorescence is proportional to Chl-a concentration

Advantages

- **ü** Robust and non-invasive measure
- ü Continuous vertical profiles
- Big potential, with the integration of fluorometers on gliders and Bio-Argo floats.

Limitations

High variability of $\frac{FLUO}{Chl-a}$

- **ü** To determine calibration coefficients for each cruise or profile.
- **ü** To correct specific artefacts due to the non linearity of the $\frac{FLUO}{Chl-a}$ over the water columns (ex: NPQ).

Non Photochemical Quenching

In response to supra-optimal light intensity, phytoplankton cells trigger photoprotection mechanisms which drive to a decrease of fluorescence emission.

The Chl-a fluorescence to overcome constraints related to Chl-a data derived from water samples

Objective

Create a Chl-a database from fluorescence profiles and investigate the seasonal variability of the vertical distribution of Chl-a in the Mediterranean Sea.

- Mean seasonal behaviors
- Changes in the shape of the vertical Chl-a distribution
- Comparison with satellite data

The fluorescence database: main sources of data

Temporal range: 1994-2014

Data source	Number of profiles	
Online databases (PANGAEA, SISMER, WOD09, OGS database)	986	
French cruises (PROSOPE, DYNAPROC, BOUM, ALMOFRONT, DYFAMED, MOOSE-GE, DEWEX)	2670	
SESAME Program	1815	
MEDAR Program	228	16% of database
Bio-Argo (PABO and NAOS projects)	1091	
TOTAL	6790	(44% of data after 2008

The fluorescence database:

Spatial distribution

Seasonal distribution

- **ü** Bio-Argo data allow for an homogeneous distribution of observations, especially in remote areas.
- ü Bio-Argo data allow for an homogeneous seasonal sampling.

Quality Control and Calibration

Mean seasonal variability of the vertical distribution of Chl-a in 4 locations of the Mediterranean Sea

Comparison/Validation with MEDATLAS

MEDATLAS
Chl-a from fluorescence

Analysis of the general shape of the fluorescence profile: 5 standards shapes have been identified in the database and a simple algorithm was proposed to automatically categorize a fluorescence profile

Seasonal distribution of the standards profiles shapes in main Mediterranean regions

west basin, in late winter or in spring. This shape is representative of bloom situations.

Satellite ocean color data

Climatology from fluorescence

Shape analysis

Conclusions and Perspectives

- Fluorescence Chl-a profiles contribute to improve our understanding of the Chl-a seasonal variability.
- Seasonal changes in the shape of the ChI-a profile could be considered as an indicator of the trophic regime.
- These data are fundamental to complete satellite observations.

PERSPECTIVES

Updating the database in a few years with more Bio-Argo data Analyzing mechanisms which control phytoplankton seasonality -> Bio-Argo time-series

Thank you for your attention

For more details:

- Lavigne, H., D'Ortenzio, F., Claustre, H. and A. Poteau. Towards a merged satellite and in situ fluorescence ocean chlorophyll product. *Biogeosciences* 9, 2111–2125. 2012.
- Lavigne, H., D'Ortenzio, F., Ribera d'Alcalà, M., Claustre, H. and R. Sauzède. On the vertical distribution of the chlorophyll-a concentration in the Mediterranean Sea: A basin scale and seasonal approach. Biogeosciences Discussion. Submitted.

Seasonality of the DCM depth

In each region of the Mediterranean Sea, DCM depth deepens from March to August and then shallows.

These observations are consistent which a recent theory according which the DCM depth is driven by PAR and follows an isolume (Letelier et al., 2004; Mignot et al., 2014)

What is known about the seasonality of the vertical distribution of Chl-a in the Mediterranean?

- Deep Chlorophyll Maximum (DCM) is ubiquitous from May to September.
- "mixed" profiles have been observed during winter.

1000

1992)

station (redraw from Marty et al., 2002)

Quality Control and Calibration

$$[Chl - a] = \alpha \cdot (FLUO - \beta)$$

Quality Control and Calibration

$$[Chl - a] = \alpha \cdot (FLUO - \beta)$$

The fluorescence database: spatial distribution

Bio-Argo float data allow for an homogeneous distribution of observations, especially in remote areas.