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Data and Methods
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Past observations of convection in the Irminger Sea are limited in space and time

> Lack of data, especially during wintertime

> Focus on the Labrador site
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Mechanisms of convection in the Irminger Sea

1. Preconditioning
e Cyclonic circulation : Irminger Gyre [Lavender et al., 2000]
e Doming of isopycnals [Pickart et al., 2003]

e LSW in the Irminger intermediate layers [Pickart et al., 2003]
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Vertical section (ARI1E) of potential density
Irminger Sea circulation [P. Lherminier, LPO] [Pickart et al., 2003]
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e0
Mechanisms of convection in the Irminger Sea

2. Atmospheric forcings

Greenland relief influence : formation of Greenland Tip Jet events

Greenland Tip Jets :

e regional-scale atmospheric events
e high wind speed (westerly)
e duration < 1 day

e induce heat loss that can reach 1000
W.m=2 locally

Mean (1999-2002) Tip Jet QuikSCAT winds
(m.s~) and ERA 40 sea level pressure (hPa) [Vage
et al., 2009]; Blue box : 'TJ box’
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Questions

ARGO data, sampling the Irminger Sea all year (especially during winters) give
informations about the ocean AT BASIN SCALE, DURING the convection event.

ARGO data permit to identify a deep convection event during the 2011-2012
winter.

> What is the spatial extent of deep convection in the Irminger Sea?

>~ Can we identify the sequence of atmospheric forcings responsible for
convection ?

> Can we use the 2011-2012 event to have a better understanding of the
past events that could not be observed because of the lack of data?
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ARGO data in the Irminger Sea
Between Sept. 2011 and Sept. 2012 :

e 574 vertical profiles from 51 different floats

e 4 floats have particularly been studied
(4901163, 4901165, 4901166 and 5902298)

e 1 float with an O sensor during convection

Model and satellite data

e ADT (Absolute Dynamic Topography) : AVISO (7 days; 1/3°)
e SST, wind : ERA-Interim (12h; 1/2°)

e Air-sea heat flux : ERA-Int. (12h; 1/2°). NCEP (R-11) and ARPEGE (op.
model) (1 day; 1/2°)
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Method of determining Mixed Layer Depthsu(M LD)

2 automatic methods

» the threshold method (de Boyer Montégut et al., 2004) : Ac = 0.01 kg.m™3

» the split-and-merge method (Thomson and Fine, 2003) : € = 0.003 kg2.m~®

Visual inspection of vertical profiles

Check results of the 2 automatic methods and identify :

> homogeneous profiles from the surface (o)

> homogeneous below a stratified layer (x)
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Deepening of the mixed layers along floats tfajectories

Anne Pir

Eur

Left : floats trajectories between Sept. 2011 and
61°N Jul. 2012
- white dots : floats positions during deepening
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Spatial extent of the convection
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Symbols : MLD (white : < 680m - magenta : > 680m - black : ~ 1000m)
Shade : dynamic topography (contours : -65, -55cm)
Boxes : convection areas (white : north box - black : south box)
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Local formation of the convection
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Preliminary conclusions :

e The convection occurs at basin scale following different stages. The deepening :

> was progressive until early February
>~ slowed in February
>~ strongly restarted, bringing MLDs at 1000m at mid-March

e The convection formed locally in the Irminger Sea
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Heat bugdet along floats trajectories

Equation of heat budget [de Boisséson et al., 20
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> Heat flux explain most of the mixed layer heat variation
>~ Ekman terms are weak

> Heat losses are exceptionally strong early March
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Black curves : TJ box

Red curves : north boxes

Blue curves : south box

Tip Jet criterion

zonal wind > 19 m.s—*

Winter 2011-2012

inventory :

Ekman (W m‘z)

- Total : 18 TJ (Sep. - Mar.)
- 3 longer than a day

- 2 very exceptional early
March
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Preliminary conclusions

e Air-sea heat flux mainly explain the mixed layer heat content variation

e The heat loss events are concomitant with Greenland Tip Jets :
> Number of Tip Jets reduced in February explain the slowing deepening
during February
> An event of strong heat loss, caused by 2 consecutive intense Tip Jets,
explains the abrupt re-deepening of the mixed layers at mid-March

e Heat loss by Ekman terms are weak
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Back to the early 1990s...

Anomalies of cumulated
heat flux :

- at the surface (top)

- associated with
Ekman transport
(bottom)

- Anomalies of dyn.
topography (top)

- Hurrel PC-based NAO
wintertime (DJFM)
index (bottom)
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clusions

e Thanks to ARGO data, it is the first observation of Irminger Sea deep
convection, at basin scale and during the whole period of convection

e Convection zone located east and south of Cap Farewell

e Deepening (2 months) : firstly progressive, then interrupted (Feb.), and finally
strongly restarted bringing ML at 1000m. Fast restratification

e Heat budget along floats trajectories :
> Air-sea heat flux are mainly responsible for the ML heat content variation
> Role of Ekman terms is less important

e The TJ caused the heat loss

e Late intense TJ early March deepened the MLs up to 1000m. Without these
late TJ, MLs would probably not reach 1000m and convection would have
stopped in February : so, finally a local small-scale atmospheric event has
influence on a larger scale oceanic event

e NAO, Ekman, Q, cyclonic circulation : indicators of deep convection for the
Irminger Sea, for past years that have no observation
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