Euro-Argo Brest, March 2015

Assessment of the subsurface observing system in the Equatorial Pacific: The role of Argo in resolving intraseasonal to interannual variability

Florent Gasparin

SIO, UCSD

Dean Roemmich, John Gilson, Bruce Cornuelle and Janet Sprintall

TROPICAL PACIFIC OBSERVING SYSTEM (TPOS 2020)

This would oversee the transition to a more resilient and integrated observing system.

- for **monitored**, **observed** and **predicted** the state of ENSO,
- for sustained observations to support prediction systems,
- for advanced and refined the knowledge of the predictability horizon.
- for determined **interannual to multidecadal variability** impacts.

Milburn et al., 1996

ΤΑΟ

Argo

OPTIMAL INTERPOLATION (Roemmich and Gilson, 2009)

First step

- Climatological annual cycle, least square fit at each pressure level with the 300 "nearest" points.
 - (100 from the present pressure level plus 100 from each adjacent pressure level above and below, for each of the 12 months).
- Data weighted in inverse proportion to their horizontal distance from the grid point

Second step

- Then, anomalies from this first estimate, for each of 5-day bins of the time-series, were calculated by objective analysis.
- Data weighted depending on spatial and temporal scales

1. Sampling improvements

SPATIAL SCALES

Main differences between RG2009/G2015 : Using more than 10 years of data Focusing on the Equatorial Pacific

==> Normalised covariance of *Steric Height anomalies (0/2000)* from the climatological cycle

- Underestimation of covariance near the Equator
- Small increase of zonal scales between RG2009 and G2015

- Longer meridional scales at the Equator (not taken into account in RG2009)

COMPARING INDEPENDENT DATA : TEMPERATURE at 100m from TAO moorings

- Argo is not able to represent upper ocean properties <u>at timescales lower than 20 days.</u>
- The 20-day signal represents around 70-80% of the total signal (TAO estimate).
- How intraseasonal and longer term variability can be represented by Argo ?

COMBINING ALTIMETRY & ARGO : TEMPERATURE at 100m from TAO moorings

100m temperature at 140°W, 0°N

<u>Synthetic Temp:</u> Linear regression on altimetry and 100-m Argo temperature

Altimetry-Argo combined:

- First guess is synthetic temp.
- Optimal interpolation with Argo

==> Altimetry-Argo combined is better than Argo-alone and Altimetry-alone.

Significant improvements

ASSESSMENT OF THE ESTIMATED ERRORS IN TEMPERATURE

The ESTIMATED *ERROR* (mean square error) in any optimal average is:

- proportional to the signal variance,

- dependent on the individual data points only in terms of the **data spacing**, not the individual data values themselves,

- the chosen spatial/time scales and signal-to-noise.

In general, G2015 lower than RG2009 and more consistent with OI minus independent observations.

==> important feature for assessing sampling strategies in the following

DIFFERENT ERRORS FOR DIFFERENT DESIGNS FOR THERMOCLINE TEMPERATURE

2006-2013 TAO average : Low errors at the mooring sites, high errors betweenMay 2014 Argo : Lower error along the equator

2006-2013 Argo average : More uniform Integrated system : Advantage of both datasets

PRELIMINARY CONCLUSION ON THE OCEAN OBSERVING SYSTEM

Argo skills

- Homogeneous coverage
- High vertical resolution
- Salinity measurements down to 2000 m
- Cost per profile

weaknesses: temporal resolution, 10-year dataset

TAO array skills

- High frequency time-series data at the moorings sites.
- Atmospheric, and interface measurements
- Current velocity measurements
- The longest time series in the tropical Pacific (more than 30 years) <u>weaknesses:</u> spatial resolution, maintenance cost

Satellites

- Relatively high spatial and temporal resolution at the ocean surface.
- Salinity measurements at the surface
- 20-year dataset

weaknesses: no subsurface measurements

- **Measurement overlaps** are essential in an observing system due to the crucial need of intercomparisons which enable to assess the reliability of each component.
- Differences in the temporal and spatial resolution in the measurements enable to take advantage of **the skills of each component** of an observing system.

INTRASEASONAL VARIABILITY - Altimetric SSH & Argo SH anomalies

average from 1.5°S to 1.5°N.

Upper thermal layer in 2015 - Is El Niño coming ?

average from 1.5°S to 1.5°N.

Monthly Ocean Briefing (NOAA Center for Weather and Climate Prediction)

SCRIPPS Argo-product

SUMMARY

Assessment of the subsurface ocean observing system in the Equatorial Pacific: The role of Argo in resolving intraseasonnal to interannual variability

- 1. Re-mapping the upper-ocean properties with a more accurate equatorial characteristics.
- 2. Comparing estimation to TAO temperature and altimetry sea surface height.
- 3. Assessing different components of the oceanic observing system.
- 4. Showing how vertical, zonal and meridional resolution has improved the representation of equatorial dynamic at intraseasonal and longer-term variability

Gasparin et al., 2015, Assessment of the ocean observing system in the Equatorial Pacific: The role of Argo in resolving intraseasonal to interannual variability, Journal of Atmospheric and Oceanic Technology, (in review).

Extra

SALINITY IN THE WESTERN PACIFIC

VERTICAL STRUCTURE

error on the vertical

RMS / altimetry - combined

PDF conversion