Argo Floats in the Nordic Seas

Gunnar Voet

Institut für Meereskunde KlimaCampus - Universität Hamburg

With contributions from Detlef Quadfasel, Katrin Latarius, Kjell-Arne Mork and Henrik Søiland

Euro-Argo User Workshop Paris 18.06.2010

Current research questions

The Nordic branch of the Meridional Overturning Circulation

- What are the key regions for the water mass transformation?
- What are the key processes?
- What variability is observed?

Outline

- Data set
- Mid-depth circulation of the Nordic Seas
- Hydrography of the Greenland Sea
- Conclusions

Data set

Data set

Floats mainly stay in their basins

Strong advection is limited to boundary currents

Exchanges between gyres and boundary flow then must be dominated by diffusive processes

Deep drift from trajectory data

Time-mean mid-depth circulation

Cyclonic circulation in the basins, intensified at boundaries

> **Cyclonic forcing:** Wind stress curl Buoyancy fluxes River runoff

Variability on the seasonal time scale

Variability on the seasonal time scale

Greenland Sea Hydrography

Development of monthly mean temperature, salinity and density in the Greenland Sea, 2001 – 2007.

Number of independent measurements per month.

The seasonal signal dominates, inter-annual variability is most pronounced in salinity.

Greenland Sea – Error of the Mean

Greenland Sea – Error of the Mean

Deviation of virtual float measurements (subsamples of the CTD grid) from the basinwide CTD mean T and S.

Budget Calculations - Concept

Lateral exchange and vertical convective mixing is estimated as the residuum

Surface heat/freshwater flux data are taken from different meteorological models and satellite observations: NCEP/NCAR, ECMWF, NOC, OAflux, J-OFURO, HOAPS, REMO

The development of the heat and freshwater content in the ocean is derived from ARGO-float profile data

Budget Calculations – Surface Fluxes

Large differences in the heat and freshwater fluxes at the air-sea interface derived from atmospheric models and satellite observations.

Budget Calculations - Results

Greenland Sea Gyre: heat is imported laterally (50-1500m) and exported to the atmosphere and in the upper 50m freshwater is imported from the atmosphere and exported laterally

The **surrounding** of the gyre between 50 – 1500m looses heat and salt by exchange with the Greenland Sea Gyre

Conclusions

Contribution of the Greenland Sea Gyre to the water mass transformation within the Nordic Seas

temperature: -0.5 K \rightarrow 3% of transformation salinity: -0.004 \rightarrow 1% of transformation change in density ±0

Atlantic inflow 8 Sv, 12°C, 35.25, 26.8 kg/m³

Conclusions

How is the budget closed?

5×10²⁰ J/year heat loss over the entire gyre is compensated!

No mean advection of warm water from the boundary is observed

Eddy fluxes have to compensate heat loss. First estimates from East Greenland Current mooring data support the assumption.

Observations and models show eddy structure.

Future work: Examine mooring data around the gyre

Latarius, K. & D. Quadfasel Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: heat and freshwater budgets. *Tellus A*, 2010.

Voet, G., D. Quadfasel, K.-A. Mork, & H. Søiland The mid-depth circulation of the Nordic Seas from profiling float observations. *Tellus A*, 2010.

gunnar.voet@zmaw.de