Using Argo under sea ice

Olaf Klatt Olaf Boebel Eberhard Fahrbach

Alfred-Wegener-Institut, Bremerhaven

Climate variability

Polar regions play a critical role in setting the rate and nature of global climate variability, e.g.

- heat budget
- freshwater budget
- carbon budget

In the past the high latitude oceans have been drastically under-sampled, particularly in winter

Temperature anomalies from the climatological mean (Böning et al..2008)

Outline

- Introduction
- Towards ice compatible floats
 - Antarctic (Weddell Sea) realisation
 - Ice Sensing Algorithm
 - Interim Store
 - RAFOS-Receivers
 - Array of Sound sources
 - Arctic planning
 - Arctic ISA
 - Physical Ice Protection

Ice compatibility of Argo floats: a 3 step process

Ice protection (ISA, aISA)	Interim storage (iStore)	Under Ice location (RAFOS)
Aborts ascent when sea – ice is expected at the surface protects the fragile parts against the ice pressure	Provides delayed mode profile when surfacing impossible	Provides subsurface profile position when surfacing impossible
Successful (Weddell Sea) Arctic update under test	Successful (Weddell Sea) No update is needed	Successful (Weddell Sea) Installation of a small array is planed

Weddell Sea solutions

Ice protection: Antarctic ice sensing was defined

If the median of the temperature between 50db and 20db ($T_{|p=(50,45,40,35,30,25,20 \text{ dbar})}$) is less -1.79 °C abort surface attempt

 \rightarrow Increased the "survival probability" and doubled the life time of floats in ice invested areas.

Recent Argo float distribution

Weddell Sea data

WOCE: CTD-stations

AWI floats

1100 CTD casts

7000 float profiles

Weddell Sea data

Weddell Sea solutions

• Ice protection: Antarctic ice sensing was defined

If the median of the temperature between 50db and 20db $(T_{|p=(50,45,40,35,30,25,20 \text{ dbar})})$ is less 1.79 °C abort surface attempt

 \rightarrow Increased the "survival probability" and doubled the life time of floats in ice invested areas.

Interim storage (iStore) was established

 \rightarrow For the first time a noteworthy amount of data obtained in ice covered areas.

Temperature and Salinity Cycle

AWI_088 wmo number: 7900086

Weddell Sea solutions

Ice protection: Antarctic ice sensing was defined
 If the median of the temperature between 50db and 20db (T_{|p=(50,45,40,35,30,25,20 dbar)}) is
 less 1.79 °C abort surface attempt

 \rightarrow Increased the "survival probability" and doubled the life time of floats in ice invested areas.

• Interim storage (iStore) was established

 \rightarrow For the first time a noteworthy amount of data obtained in ice covered areas.

Under ice location: RAFOS technique

 \rightarrow geo-referenced under ice profiles

Under ice location: 2009: array of 10 Sound Sources installed

Subsurface trajectory

Weddell Sea solutions

- Ice protection: Antarctic ice sensing was defined If the median of the temperature between 50db and 20db (T_{|p=(50,45,40,35,30,25,20 dbar)}) is less 1.79 °C abort surface attempt
- \rightarrow Increased the "survival probability" and doubled the life time of floats in ice invested areas.
- Interim storage (iStore) was established
- \rightarrow For the first time a noteworthy amount of data obtained in ice covered areas.
- Under ice location: RAFOS technique
- \rightarrow geo-reference of under ice profiles
- Scientific application

Velocity and Temperature from the Floats

Float data in combination with a model

Mean temperature of WDW in the Weddell Sea

WDW temperature at Greenwich meridian from CTD sections

Fahrbach et al. 2010

Arctic

- Iridium
- Arctic ISA (ice-temperature-correlation)
- Physical ice protection

 New sensor for ice sensing photodiode

Falsely ISA attributed ice conditions

Ice protection

Outlook: New sensor for ice sensing

Transmission coefficients of water and ice

Deployment plan: June/July 2010

(personal comunication W. Walczowski)