Barrier layer variability in the

Western Pacific Warm Pool during 2000-2007

Christelle BOSC *, Thierry DELCROIX , Christophe MAES

* Contact : LEGOS – TOULOUSE , christelle.bosc@legos.obs-mip.fr

First Euro-Argo Users Workshop ; Southampton, June, 24-25th, 2007

(@IRD C. Maes)

2.1. ARGO profiles available since 2000

2.1. ARGO profiles available since 2000

2.1. ARGO profiles, CTD, TSG available since 2000

2.2. Validation and quality control

11 000 ARGO profiles exploitables (96%) 1 700 CTD profiles (85%) 16 500 TSG measurements

<u>Vertical interpolation:</u> dz=5m ⇒ Isothermal layer depth (ILD) Mixed Layer Depth (MLD) from individual profiles

Gridding:

 $dx=5^{\circ}$ longitude, $dy=1^{\circ}$ latitude, dt=14 days

3. Thermohaline structure variability

- 1. Surface thermohaline structure: SSS front
- 2. Subsurface thermohaline structure: barrier layer

3.1. Surface thermohaline structure: SSS front

3.1. Surface thermohaline structure: SSS front

3.1. Surface thermohaline structure: SSS front SST (°C) 2°N-2°S 2006 isoT 29°C 人内 Eastern Edge SST>29.5°C of the WP west of the 2004 29.5 isoS 34.8 SSS front Front 2002 29.5 ٥ 2000 130°E 150°E 170°E 170°₩ 150°W 130°W 27 29 3 25

3.1.a- Surface thermohaline structure: SSS front SST (°C) 2°N-2°S 2 -3 3 n -1 -2 S() 2006 Zonal displacements -eastern edge of 2004 29.5 the WP -SSS front 2002 in phase with the SOI 0 2000 Advective-Reflective Oscillator theory for ENSO

150°E

170°E

27

170°W

130°W

31

150°W

29

130°E

25

(Picaut et al., 1997)

3.2. Subsurface thermohaline structure: barrier layer (BL)

3.2. Subsurface thermohaline structure: barrier layer

- Barrier layer thickness 2°S-2°N 2006 isoS 34.8 2004 2002 0.00 2000 120°E 140°E 160°E 180° 160°W 140°W 120°W (m) 90 60 50 70
- Quasi permanent BL
- West of the front

3. Thermohaline structure: SSS front and barrier layer

4. Possible mechanisms for Barrier layer formation

0. Numerous possible mechanisms

Subduction *Lukas and Lindstrom 1991* Tilting/shearing *Cronin and McPhaden, 2002* Advection *Cronin and McPhaden, 2002* Precipitation *Mignot et al, 2007*

1. Local forcing

2. Remote forcing: equatorial Rossby waves

4.1. Local subsurface forcing : Subduction

4.2. Remote forcing: equatorial Rossby waves

 $U_{RO1} < 0 \Rightarrow Udownwelling \Rightarrow w < 0$

Upwelling Rossby wave

Downwelling Rossby wave

4.2. Remote forcing: equatorial Rossby waves

5. Barrier layer and very warm SST (« hot spots »)

Barrier layer thickness 2N-2S

- Summary -

 Study of the thermohaline structure of the equatorial western Pacific warm pool thanks to Argo floats (2000-2007)

Thermohaline structures of the warm pool:

- surface: SSS front (34.8), eastern edge of the warm pool

- subsurface : quasi permanent barrier layer (>20 m) west of the front

- strongly related, moves zonally in phase with SOI

- Possible mechanisms for BL formation:
 - Local forcing: tilting, subduction
 - Stretching by equatorial Rossby waves

Very warm SST in the warm pool are associated with Barrier layer

2.2. Validation and quality control ARGO

Different tests for values within 0 - 200m depth: 391 752 data, 12031 profile \blacktriangleright file contents (T=S column) n profils colmanq= 196: T=S ou bien iparam=1 ou 2 (svt il manq S dc ca décalle T=Tadjuste lon=0 on la récupère en interpolant nlonbad= 0 : ndatebad= 0 : t=0, on récupère en interpolant n data zbad= 6 : 0 < z < 2200m n databad = 1304 : T,S>90

Sur 200m:75:

١

 \succ T and S range within climatic limits (min, max and vertical gradients)

≻ 0 <z<700:< th=""><th>5 <t< 35<="" th=""><th>33 <s< 37<="" th=""><th>20<rho<28< th=""><th>c'est 1 profil ou</th></rho<28<></th></s<></th></t<></th></z<700:<>	5 <t< 35<="" th=""><th>33 <s< 37<="" th=""><th>20<rho<28< th=""><th>c'est 1 profil ou</th></rho<28<></th></s<></th></t<>	33 <s< 37<="" th=""><th>20<rho<28< th=""><th>c'est 1 profil ou</th></rho<28<></th></s<>	20 <rho<28< th=""><th>c'est 1 profil ou</th></rho<28<>	c'est 1 profil ou
≻Z>700m:	0 <t< 7<="" td=""><td>20 < S < 35</td><td>20<rho<28< td=""><td>y a que le delayed mode</td></rho<28<></td></t<>	20 < S < 35	20 <rho<28< td=""><td>y a que le delayed mode</td></rho<28<>	y a que le delayed mode
> dT/dz <0.7 sauf pour thermocline 14 <t<27< td=""><td>donc on lit S puis T : pb de lecture cf slide2</td></t<27<>				donc on lit S puis T : pb de lecture cf slide2

> Stability of the water column : drho/dz > -0.7: 0

> Profiles with 25m data gap within 0-200m depth are not considered: 64

 \triangleright Profile with no data within 0-15m are not considered: SST=T(15m), SSS=S(15m): 264

Sortie: 11 555 profiles (96%), 384479 data (98%)

- Fichier avec inversion colonnes T et S car y a que le DM (data 35)= pb de lecture
- *FI31200497078 CO_5900645_20080211_170104 XXXX UNKNOWN
- 18/12/2004 30/12/2007 PACIFIC OCEAN
- 31 US DOC NOAA ERL PMEL SEATTLE
- UNKNOWN Project=
- Regional Archiving= FI Availability=P
- Data Type=H13 n= 106 QC=Y
- COMMENT
- WMO PLATFORM CODE : 5900645
- PLATFORM NAME : APEX Profiling Float
- *FI3120049707800009 Data Type=H13
- *DATE=18122004 TIME=1540 LAT=N03 58.98 LON=E179 36.96 DEPTH= QC=1119
- *NB PARAMETERS=03 RECORD LINES=00072
- *PRES SEA PRESSURE sea surface=0 (decibar=10000 pascals) def.=-999.9
- *PSAL PSAL_ADJUSTED (psu) def.=99.999
- *TEMP TEMP_ADJUSTED (degree_Celsius) def.=99.999
- *GLOBAL PROFILE QUALITY FLAG=1 GLOBAL PARAMETERS QC FLAGS=100
- *DC HISTORY=846 Profiling Float, APEX, SBE conductivity sensor
- *
- *DM HISTORY=Coriolis station id : 2068090
- *Station number : 00009
- *COMMENT
- *
- *SURFACE SAMPLES=
- *
- *PRES PSAL_ADTEMP_ADJUSTED
- 6.0 35.126 29.936 111

• Pour les CTD, bcp de données de salinités sont mauvaises 25, 50 ...

4.1. Local subsurface forcing : Subduction

Dynamic height relative to 200 dbar 2S-2N

Convergence au front

4.2. Remote forcing: equatorial Rossby waves

Figure 12.

5. Barrier layer and associated surface warming

5. Barrier layer and associated surface warming

FERRET Var 5 B1 NGAA/PMEL TMAP Nay 21 2008 17.57.01

LONGITUDE : 165E LATITUDE : 0

LATITUDE : 2S to 2N (averaged) DATADASTEM:SERIES BALLES

UDSDX+VDSDY

Figure 14.

3.2. Subsurface thermohaline structure: barrier layer

- Déplacement bord Est de la Warm Pool, front de salinité en phase avec SOI.
- L'oscillateur advectif-réflectif (Picaut et al., 1997): zone du front au coeur de la dynamique ENSO

Voir la synthèse de Picaut et al, 2001

TXh532_sno9306-4N4S120E250E,Frontgradmax

1.3. ENSO. Etude de la zone frontale: motivations

0.4

0.6

0.8

1.0

0.2

0.0

RMS SSSI: 08-Jan-2003 a 04-Jul-2007

3.5. Couche barrière: entre l'océan et l'atmospohère

3.2. Mécanimes: formation de la couche barrière de sel

2.2. Observations disponibles depuis 2000: gridding

Interpolation: 5°x1°x14 jours x 5m

3.1. Observation du front: structure horizontale et verticale

1.2. **ENSO**. Etude de la zone frontale : structure thermo haline verticale

(Lukas et Lindstrom, 1991)

3.2. Front et Couche Barrière de sel

34.0

34.4

34.8

35.2

94.0

34.4

34.8

35.2

ndata zt ou zs=amiss, %17930.334444npro colonnes manquantes zt=zs, %330.405804ndata pb ampli et delta , %3950.000.736784ndata pb stabilité , %00.npro trous de 50m dans 0-200m, %410.504181

Profils:n,ndef,%81321652.02902Data:n,ngood,%53611452747898.3891Profils BL:npro,nBL,%,zo=2081327433.0091.4043

Déploiements Frontalis-3

au 23 mai 2005

1.2. Variabilités décennales : rappel

3.1. Estimation de la qualité des données récoltées au déploiement

Comparaison avec la climatologie* (Moyenne $\pm 3 \sigma$)

 $(17^{\circ}S - 165^{\circ}E)$

* Delcroix et al. (1992), Gouriou and Toole (1993)

2.1. Observations du front équatorial: Frontalis 3

<u>Trajectoire des flotteurs mis à l'eau</u> <u>pendant FRONTALIS3</u>

1.2. **ENSO**. Etude de la zone frontale: motivations

