Ocean data assimilation of profile data on density levels in FOAM

Daniel Lea¹, Keith Haines², Greg Smith² and Matt Martin¹

¹ UK Met Office ² ESSC, Reading University

We modify the UK Met Office FOAM (NEMO) OI ocean data assimilation system to assimilate profile data (including Argo) on density levels. The model background field is converted to spiciness on a set of specified density levels and the Addo on density levels. The model background herd is converted to spiciness on a set of specified density levels and the depth of those density levels are calculated. The profile observations are also converted to spiciness and density level depth for the same set of specified density levels. We perform two analyses, first of spiciness on density levels with the data being spread over large spatial scales, and second of density level depth with smaller spatial scales. The order of the analyses is not important. The resulting increment fields are converted back to temperature and salinity on model zero. levels. The results of this are compared to the standard FOAM assimilation on z-levels over a 1 year period assimilating the same observations.

The model used in the assimilation is a 40 level NEMO version of the 1/3 degree North Atlantic FOAM system run at the Met Office. The spiciness definition is a simplified function of temperature and salinity which is designed to be orthogonal to density, $\pi = 3[T/20+S/10]$ (units kg m⁻³).

Part 1 introduces density level assimilation with the assimilation of one profile observation. In part 2 we assimilate multiple observations and use the PV filter to control the spreading of information across fronts. Part 3 shows the results of running the density level assimilation system for 1 year compared to the z-level assimilation system. In part 4 we use the Hollingsworth and Lönnberg (1986) method to try to improve the error covariances.

1. Assimilation of one profile observation

To test the density assimilation system we assimilate a single Argo profile observation. To do this both the observation temperature and salinity are converted to spiciness on specified density surfaces, m(p), and the depth of those surfaces, z(p), is calculated by linear interpolation. This takes advantage of a natural split between slow water mass changes in π (p) and faster changes in z(p). The assimilation analysis is performed in density level space so the increments spread along density surfaces. There are 101 evenly spaced density levels ranging from 1021 kg m⁻³.

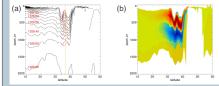


Fig 1: South – North section at 52.3°W. (a) Assimilation of density level depth. The density levels before assimilation are shown as black lines and after assimilation in Only every second density level is plotted. The yellow line shows the observation location (36.8°N, 52.3°W). (b) Assimilation of spiciness on the background density variaces. Correlation withs rate 60 km and 400 km for $\pi(p)$ and z(p) respectively.

The assimilation increments must be converted back to temperature and salinity on z-levels to be inserted into the model.

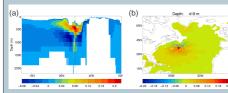


Fig 2: Results of converting the increments in Fig 1 back to z-levels. (a) South – North section at 52.3"W of salinity increments (psu). Note the contribution of large scale spiciness changes and the local effect of the change in the density level are of opposite signs at – 1000 m. (b) increment of salinity at 418 m (model level). The structure of the increment reflects the background density structure.

3. Comparison of z-level and p-level assimilation

The p-level assimilation gives better results near the surface (at low density) but worse results at depth. There are fewer observations at low density, therefore on average the z-level assimilation gives the best results. This is surprising given that density level assimilation bould be more physically realistic than z-level assimilation. One possibility is that the background and observation variances for the preliminary p-level assimilation are quite crude. In contrast, the z-level covariances have been developed and tuned over a number of years. Initial estimates of the background variance of the spicness were assumed to be 1 everywhere which may be too high. The spicness observation errors were calculated from the z-level erors and are approximately 0.1. We can use this initial integration to improve the results using the Hollingsworth and Lönnberg method (1986). See section 4.

2. Potential vorticity filtering

It is generally advantageous to spread spiciness information over large distances along density surfaces in most cases, except in regions such as the Gulf Stream where the potential vorticity (PV) gradient is high. Therefore, we introduce a dependence on the PV gradient into the horizontal recursive filter which spreads the increments. This is implemented by reducing the correlation width where the PV gradient is high. Hore Streams and the stream of the density layer thickness. The width is proportional to 1+k(grad, PV) with the widths in the x and y directions treated separately. The k value (k=10² kg⁻/m²s) is tuned to give a range of correlation widths typically from 400 km to 40 km.

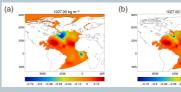


Fig 3: Increments of spiciness on a density surface matrice PV filtering. The spreading of the increments is much reduced while also where it is largely unaffected. ss on a density surface with (a) no PV filtering and (b) with f the increments is much reduced near the Gulf Stream

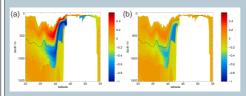
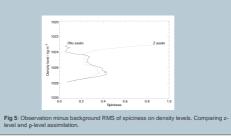



Fig 4: South – North section at 52.3°W. (a) no PV filtering and (b) with PV filtering. The solid line shows the 1027 kg m⁻³ density surface (see Fig 3). With the PV filter the negative spiciness increment which propagated onto the shell (where the spiciness is already low) no longer does so. The increment size is reduced elsewhere because the increments from nearby observations are spread less far.

Ocean Forecasting Research and Development

The Hollingsworth and Lönnberg (1986) (HL) method is a standard way to improve the background error and estimate the observation error (including represention error). It was used in the original FOAM system – the difference here is that we examine spotieness and density level instead of salinity and temperature. HL requires an initial assimilation run which produces the background values at the observation locations. Then the covariance of observation minus background (O-B) values are plotted and a covariance (SOAR) function is fitted. The improved correlation scales and variances can be used to a out-servation line.

4. Calculating error covariances

used in a subsequent assimilation 0.015 0.010 -0.005

NCOF

Fig 6: Covariance of O-B (excluding the Gulf Stream region) in 40 km bins (diamonds). The solid line shows the fitted SOAR function with a width of ~300 km and peak value of 0.007. The star shows the variance of O-B (0.016). The difference between the variance and peak value is the estimated observation error (0.009).

Spatially varying background variances can be found by binning the results in 10 by 10 degree bins. Getting stable statistics is difficult due to the relative sparseness of profile data. Assuming a uniform correlation width (400 km) gives reasonable variance results, however. The main result is that the spiciness background error is much lower than that used previously.

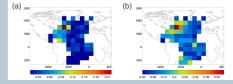
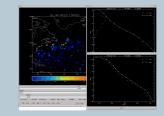



Fig 7: (a) Spiciness background variance estimate using the HL method. (b) Spiciness observation error estimate.

Given the difficultly in obtaining stable statistics another method of calculating covariance statistics may be required, for example the NNC method, to complement HL (not yet done). A run with statistics calculated from the above HL only analysis produced little improvement on the results in section 3. Further investigation is planned on how to improve the results. I have developed an IDL program ("dataplot") to examine the observation and model values which may help identify potential problems.

xample screenshot of "dataplot". Shows a map of observation minus rund values. Overlaid are selected profile plots of observation and background Fig 8: Ex backgrou values.

5. Discussion

A system of assimilating observations on density surfaces has been developed. This has the potential to improve the horizontal spreading of observation information.

•The background and observation errors may need further improvement, however, to gain maximum advantage from this assimilation method.

•The FOAM system has been transitioned to a 1/4 degree ORCA025 configuration. Experiments with density level assimilation are planned using the observation operator framework with this new system.

Hollingsworth, A. and P. Lönnberg, 1986. The statistical structure of short range forecast errors as determined from radiosonde data. Part I: The wind field., *Tellus*, 38A, 111-136.

NATURAL ENVIRONMENT **RESEARCH COUNCIL** IENTAL SYSTEMS SCIENCE CENTRI

Met Office FitzRoy Road Exeter Devon EX1 3PB United Kingdom Tel: +44 (0)1392 884854 Fax: +44 (0)1392 885681 Email: daniel.lea@metoffice.gov.uk

monorisht 2005, 05/0193, Mat Office an